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1. 2D vs. 3D MORPHOLGY. RHYTHMIC  
MORPHOLOGY.

‘2D’ morphology (zb(x))
Sea bed topography
(and/or shoreline) 
approximately uniform along
the coast

‘3D’ morphology (zb(x,y))
Sea bed topography
(and/or shoreline) 
with alongshore gradients

Australian beaches
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1.   2D vs. 3D MORPHOLOGY. RHYTHMIC MORPHOLOGY.

Basic field knowledge
Classification of wave conditions with respect to sediment size
(which if time allows give rise to a particular beach equilibrium state)
(Wright y Short, 1984; Sunamura, 1988; Lippmann y Holman, 1990)

Dissipative
conditions

Reflective
conditions

Intermediate 
conditions

All the incident wave
energy is dissipated

Fine sand, large waves
wave period relatively
short

A signifiicant fraction
of wave energy is
reflected (up to ~ 30 %)

Coarse sand, small waves
wave period relatively
long

3D Morphology
(in the surf zone)



2. SEDIMENT TRANSPORT. 
THE STIRRING FUNCTION

Bedload transport by a current
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Bagnold, 1963

x

z
)(zur

bur q
r

bzz =

szz =

vub
rr μ=

( )vvvrq cri
rr 22ˆ −=

vvq rr )(α=

Vertically averaged sediment flux
= total volume crossing the
horizontal length  unit per  time unit
=  m3 / m × s = m2 s-1

∫= s

b

z
z dzzu

D
1uv )(

rvr

D



2. SEDIMENT TRANSPORT. THE STIRRING FUNCTION

Suspended load transport by a current
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2. SEDIMENT TRANSPORT. THE STIRRING FUNCTION

vDuvq o
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However, many complications arise:

Vertical profiles vary in space and time:
in particular, c(x,y,z,t) has its own dynamics 

Current + wave oscillatory flow  
very often in different directions 

Still, there are relatively simple formulations that work  
reasonably well in the nearshore with waves + currents. 
For example:

Bailard
Soulsby-Van Rijn

It makes sense to assume:

uo = bed wave orbital velocity



3. BED EVOLUTION EQUATION. 
POTENTIAL STIRRING
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3. BED EVOLUTION EQUATION. POTENTIAL STIRRING

CONSEQUENCE:
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4. ‘BED-SURF’ INSTABILITY.  
SHORE-TRANSVERSE BARS.

00 <⇒>
dx
dz

dx
dH s

water conservation ⇒ vx= 0
alongshore momentum balance ⇒ vy= 0
cross-shore momentum balance :

Mean hydrodynamics: 

Shore-normal wave incidence
No alongshore gradients
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By assuming the same
momentum balance in x:

There is no 
possible equilibrium
without currents.

4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

Mean hydrodynamics: 

Shore-normal wave incidence
With alongshore gradients

Rip current
Larger set-up in 
the mean water
level

x

y



4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

Shore-normal wave incidence

Morphodynamic instability:
Wich is the direction of the potential stirring?

D/α

x

( )D/α∇

accretion

erosion
Positive feedback

Alongshore uniform topography
is unstable

Formation of transverse bars
Associated circulation

Seaward



4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

Numerical simulation of the formation of transverse bars from  
initial small bed perturbations.  
Shore-normal incident waves with H=1 m 
morfo55 model. 
(Garnier et al., 2005)

beach



4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

x (m)40 60

Transverse bars and rip currents. 
Nonlinear model morfo55 
(Garnier et al., 2005)

Aerial picture of 
transverse bars



4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

D/α

x

erosion

accrecion

Negative feedback

Alongshore uniform topography
is stable

Shore-normal wave incidence

Morphodynamic instability:
Wich is the direction of the potential stirring? Shoreward

( )D/α∇



4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

Therefore:

seaward gradient in potential stirring in the surf zone
INSTABILITY

shoreward gradient
STABILITY

BUT what determines this gradient?
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4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

12nD
D

−∝
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bedload, n = 2     ⇒ .cte
D
≈

α
⇒ stability

suspended load, n > 2 ⇒
D
α Seaward increasing ⇒ instability

bedload: coarse sand, small waves reflective conditions

Suspended load: fine sand, large waves dissipative or intermediate 
conditions

Observations show that 3D morphology occurs in intermediate conditions

BUT what happens for dissipative conditions? 



4. ‘BED-SURF’ INSTABILITY.  SHORE-TRANSVERSE BARS.

Infragravity waves
In addition to ordinary wind or swell waves with T ~ 1-20 s
There are low frequency waves with T ~ 20 s - O(1 min.) )

Because of their low frequency these waves do not break at the shoreline ⇒
Their amplitude is maximum at the shoreline (shoaling). 

Wind/swell wave orbital velocity ‘+’ infragravity wave orbital velocity
shoreward decreasing shoreward increasing

D
cte αα ⇒≈ . seaward decreasing ⇒ STABILITY

The ratio  (energy in the infragravity band / wind/swell wave energy) 
is maximum for dissipative conditions   ⇒

Dissipative conditions  ⇒
Morphodynamic stability under alongshore non-uniform perturbations



5. DEVELOPMENT OF CRESCENTIC BARS.

beach

crescentic 
bar

beach

alongshore uniform 
shore.-parallel bar 

Crescentic bars are the most common (at least best known) 
type  of rhythmic topography.

Can bed-surf instability explain why a shore-parallel bar becomes 
crescentic? 

Duck beach, NC, USA



5. DEVELOPMENT OF CRESCENTIC BARS.
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5. DEVELOPMENT OF CRESCENTIC BARS.
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5. DEVELOPMENT OF CRESCENTIC BARS.
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6. CONCLUSIONS.

The potential stirring or depth averaged equivalent concentration 
is a promising tool to understand and predict 

the stability/instability of 2D morphology
the emerging morphology when 2D morphology is unstable

Field experiments are needed to measure depth averaged 
equivalent concentration profiles and check against 
observed morphodynamics

Limitations: more complex sediment transport processes:
anisotropy
transport driven by waves without mean current
dynamics of sediment concentration, space and time lags, …
dynamics of the vertical structure (undertow, ….)


