2D/3D beach morphology: the role of the wave potential stirring

A. Falqués

Applied Physics Department Technical University of Catalonia Barcelona, Catalonia, Spain

Collaboration: D.Calvete, R. Garnier, M. Caballeria

Funding: Spanish Goverment, PUDEM project

River Coastal and Estuarine Morphodynamics October 4-7, 2005, Urbana, Illinois, USA

CONTENT

- 1. 2D vs. 3D morphology. Rhythmic morphology.
- 2. Sediment transport. Stirring function.
- 3. Bed evolution equation. Potential stirring.
- 4. Bed-surf instability. Shore-transverse bars.
- 5. Development of crescentic bars.
- 6. Conclusions

1. 2D vs. 3D MORPHOLGY. RHYTHMIC MORPHOLOGY.

'2D' morphology $(z_b(x))$

Sea bed topography (and/or shoreline) approximately uniform along the coast

'3D' morphology $(z_b(x,y))$

Sea bed topography (and/or shoreline) with alongshore gradients

Australian beaches

1. 2D vs. 3D MORPHOLOGY. RHYTHMIC MORPHOLOGY.

A beach may change from 2D to 3D and viceversa

1. 2D vs. 3D MORPHOLOGY. RHYTHMIC MORPHOLOGY.

A beach may change from 2D to 3D and viceversa

1. 2D vs. 3D MORPHOLOGY. RHYTHMIC MORPHOLOGY.

Basic field knowledge

Classification of wave conditions with respect to sediment size (which if time allows give rise to a particular beach equilibrium state) (Wright y Short, 1984; Sunamura, 1988; Lippmann y Holman, 1990)

Dissipative conditions

All the incident wave energy is dissipated

Fine sand, large waves wave period relatively short

Intermediate conditions

Reflective conditions

A significant fraction of wave energy is reflected (up to ~ 30 %)

Coarse sand, small waves wave period relatively long

2. SEDIMENT TRANSPORT. THE STIRRING FUNCTION

Bedload transport by a current

Vertically averaged sediment flux = total volume crossing the horizontal length unit per time unit = $m^3 / m \times s = m^2 s^{-1}$

Bagnold, 1963

2. SEDIMENT TRANSPORT. THE STIRRING FUNCTION

Suspended load transport by a current

2. SEDIMENT TRANSPORT. THE STIRRING FUNCTION

However, many complications arise:

Vertical profiles vary in space and time:
 in particular, c(x,y,z,t) has its own dynamics
 Current + wave oscillatory flow

very often in different directions

Still, there are relatively simple formulations that work reasonably well in the nearshore with waves + currents. For example:

- ➢ Bailard
- Soulsby-Van Rijn

It makes sense to assume:

$$\vec{q} = \alpha(v, u_o, D, \dots) \vec{v}$$

u_o = bed wave orbital velocity

3. BED EVOLUTION EQUATION. POTENTIAL STIRRING

3. BED EVOLUTION EQUATION. POTENTIAL STIRRING

Bed evolution equation BEE

$$\frac{\partial z_{b}}{\partial t} = -D \, \vec{v} \cdot \nabla \left(\frac{\alpha}{D}\right)$$

$$\frac{\alpha}{D} = \text{'potential stirring'} \\ \text{or depth averaged} \\ \text{concentration} \sim \langle C \rangle$$

CONSEQUENCE:

Acretion condition
$$(\frac{\partial z_b}{\partial t} > 0)$$
: $\vec{v} \cdot \nabla \left(\frac{\alpha}{D}\right) < 0$ Erosion condition $(\frac{\partial z_b}{\partial t} < 0)$: $\vec{v} \cdot \nabla \left(\frac{\alpha}{D}\right) > 0$

Current *against* the gradient in potential stirring Current *with* the gradient in potential stirring

Shore-normal wave incidence No alongshore gradients

Mean hydrodynamics:

 \blacktriangleright water conservation \Rightarrow $v_x = 0$ \succ alongshore momentum balance \Rightarrow v_v=0 cross-shore momentum balance : $0 = -g \frac{dz_s}{dx} - \frac{1}{oD} \frac{dS_{xx}}{dx} \implies g \frac{dz_s}{dx} = -\frac{3}{16} \frac{gH}{D} \frac{dH}{dx}$ $z = z_s(x)$ surf zone shoaling zone $\frac{dH}{dH} > 0 \Rightarrow$

Shore-normal wave incidence With alongshore gradients

Mean hydrodynamics:

By assuming the same momentum balance in x:

Shore-normal wave incidence

Morphodynamic instability:

Numerical simulation of the formation of transverse bars from initial small bed perturbations. Shore-normal incident waves with H=1 m morfo55 model. (Garnier et al., 2005)

Morphodynamic instability:

Therefore:

seaward gradient in potential stirring in the surf zone > INSTABILITY Shoreward gradient > STABILITY

BUT what determines this gradient?

$$\vec{q} = \alpha(v, u_o) \ \vec{v} \approx \alpha(u_o) \ \vec{v} = \mu u_o^n \ \vec{v}$$
initially, $v << u_o$

$$\frac{\alpha}{D} \propto D^{(n/2)-1}$$
Wave orbital velocity $u_o \approx \frac{1}{2} \gamma_b \sqrt{gD}$

 $\frac{\alpha}{D} \propto D^{(n/2)-1}$

 > bedload, n = 2 ⇒ ^α/_D ≈ cte. ⇒ stability

 > suspended load, n > 2 ⇒ ^α/_D Seaward increasing ⇒ instability

bedload: coarse sand, small waves \rightarrow reflective conditions

Suspended load: fine sand, large waves → dissipative or intermediate conditions

Observations show that 3D morphology occurs in intermediate conditions

BUT what happens for dissipative conditions?

Infragravity waves

In addition to ordinary wind or swell waves with T ~ 1-20 s There are low frequency waves with T ~ 20 s - O(1 min.))

Because of their low frequency these waves do not break at the shoreline \Rightarrow Their amplitude is maximum at the shoreline (shoaling).

Wind/swell wave orbital velocity '+'	infragravity wave orbital velocity
shoreward decreasing	shoreward increasing

$$\alpha \approx cte. \Rightarrow \frac{\alpha}{D}$$
 seaward decreasing \Rightarrow STABILITY

The ratio (energy in the infragravity band / wind/swell wave energy) is maximum for dissipative conditions \Rightarrow

Dissipative conditions \Rightarrow Morphodynamic stability under alongshore non-uniform perturbations

Crescentic bars are the most common (at least best known) type of rhythmic topography.

Can bed-surf instability explain why a shore-parallel bar becomes crescentic?

Positive feedback

6. CONCLUSIONS.

- The potential stirring or depth averaged equivalent concentration is a promising tool to understand and predict
 The stability/instability of 2D morphology
 The emerging morphology when 2D morphology is unstable
- Field experiments are needed to measure depth averaged equivalent concentration profiles and check against observed morphodynamics
- * Limitations: more complex sediment transport processes:
 - anisotropy
 - transport driven by waves without mean current
 - dynamics of sediment concentration, space and time lags, ...
 - dynamics of the vertical structure (undertow,)