Modelling of dune patterns by short range interactions

Clément Narteau

I.P.G.P., Laboratoire de Dynamique des Fluides Géologiques

grant 510640-EVOROCK from the European Community

Objectives

Implement a model conceptual enough to be applied on different types of geomorphological environments from aeolian dunes to river beds. & &

Validate our aproach by data and independent theoritical framework and numerical approach.

Barchan dunes

The physics of aeolian dunes

- *h* the height profile
- q the volumic sand flux

∂h		 ∂q
$\overline{\partial t}$	_	 ∂x

 q_s the saturated sand flux

$$\frac{\partial q}{\partial x} = \frac{q_s - q}{L}$$

An elegant formalism which gives solutions that can be used as a benchmark for numerical codes.

What is a cellular automaton?

A cellular automaton is a collection of cells interacting via simple rules.

Each cell can be assigned a scalar/state property.

This property changes due to

 \rightarrow external forcing affecting all cells.

 \rightarrow internal interactions between cells.

The external forcing is often assumed to occur at a constant rate, and the *internal interactions* are usually simplified to include only nearest neighbour interactions.

Paradigm for complex systems

Emergence of structures from the interactions between the constituent parts of a system.

Applications

Murray, A.B. and Paola, C. (1994). *A cellular automaton for braided rivers*, Nature, 371, 54.

Nishimori, H. and Ouchi, N. (1993). *Computational models for sand ripple and sand dune formation*, Int. J. of Mod. Phys. B, 7, 2025.

a 3 dimensional cellular automaton

An elementary cell \frown has a slab shape with a square base of length l_d and a height h:

$$l_d = \frac{\rho_s}{\rho_f} d, \qquad \eta = \frac{h}{l_d} \implies \tau = \frac{l_d h}{Q}$$

4 different states, 2 solid, 2 fluid

The fluid flow

Motions of cells with respect to cells.

Perspectives

Perspectives

Laboratory experiments (Saint Maur, France)

Urümqi River (Tien Shan, China)

