Numerical analysis of alternating bars in straight channels

Dr. R. Schielen,

Ministry of Transport, Public Works and Water Management, Institute of Waste water Treatment and Inland Water management

and

University Twente,

Faculty of Engineering Technology

Joint work with dr. P. Zegeling and T. van Leeuwen, Utrecht University

Ministerie van Verkeer en Waterstaat

Universiteit Utrecht

Motivation of the study

Dynamics of free bars: Theoretical analysis versus numerical analysis

'Natural rivers do not have long enough straight reaches for alternating bars to develop'

http://env-web.ceri.go.jp/alternate-bars/tokachi-river1.jpg RCEM2005, 4-7 oct. 2005

http://env-web.ceri.go.jp/alternate-bars/toshibetsu-river1.jpg RCEM2005, 4-7 oct. 2005

Same, or different: point bars

River Meuse, the Netherlands

Motivation of the study

Theoretical analysis of free bars in straight channels 2 contributions:

- 1. Colombini et al (JFM 181 (1987), pp 213-232)
- 2. Schielen et al (JFM 252 (1993), pp 325-356)

Result: Amplitude equation (Ginzburg)-Landau equation for bed-patterns

Can analytical results be reproduced numerically ?

B. Federici, thesis (2002): Topics on fluvial Morphodynamics, University of Genoa

Numerical analysis

Reproduce analytical results and'Proof' spontaneous pattern formationShow modulation behaviour

Existing models: black box, different phenomena and difficult to comprehend

Solution: Develop own numerical model

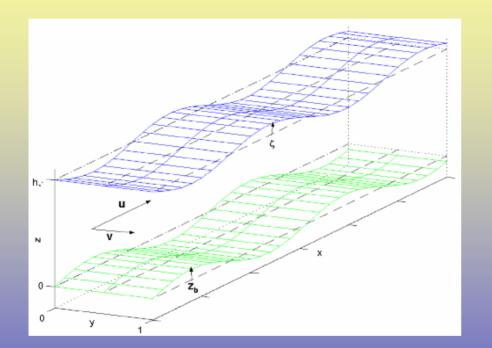
Benefit: Little tuning parameters and concentrate on phenomena

Analytical approach

-Simple model: Shallow water equations and bed-evolution -Linear theorie: Neutral stability curve, critical width to depth ratio and critical wave number -Nonlinear theorie: Amplitude equation

$$z_b(x, y, t) = A(\xi, \tau) \cos(\pi y) e^{ik_c x + \omega_c t}$$
$$\frac{\partial A}{\partial t} = rA + \alpha \frac{\partial^2 A}{\partial \xi^2} + \beta |A|^2 A$$

Situation and model



$$\kappa \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{\partial \zeta}{\partial x} = -CR(\frac{u|\mathbf{U}|}{h} - 1),$$

$$\kappa \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + \frac{\partial \zeta}{\partial y} = -CR\frac{v|\mathbf{U}|}{h},$$

$$\kappa \frac{\partial h}{\partial t} + \frac{\partial u h}{\partial x} + \frac{\partial v h}{\partial y} = 0,$$

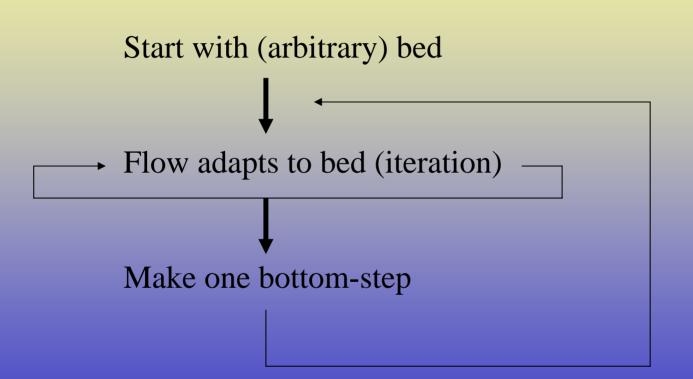
$$\frac{\partial z_b}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0.$$
 (4)

Method

-Decoupling of flow and bed
-Flow: Lax-Friedrichs
-Bed: FSCT
-Periodic boundary conditions (!)

- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

Decoupling of flow and bed



- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

Flow: Lax Friedrichs

-(Adapted) explicit method (one matrix-vector mult. per step) -Restriction on timestep (Von Neumann-analysis)

$$\begin{aligned} \frac{\partial f}{\partial t} + c_x \frac{\partial f}{\partial x} + c_y \frac{\partial f}{\partial y} &= 0. \end{aligned}$$

$$f_{i,j}^{n+1} = F(f_{i\pm 1,j\pm 1}^n; \Delta x, \Delta y, \Delta t)$$

$$f_{i,j} = \tilde{f}_{i,j} + \epsilon_{i,j} \qquad \epsilon_{i,j} = g^n e^{i(i\omega_x \Delta x + j\omega_y \Delta y)}$$

$$g(\theta, \phi) = \frac{1}{2} (\cos(\theta) + \cos(\phi)) - i\Delta t \left(c_x \frac{\sin(\theta)}{\Delta x} + c_y \frac{\sin(\phi)}{\Delta y} \right),$$

- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

Flow: Lax Friedrichs

$$\Delta t = \frac{\mu min(\Delta x, \Delta y)}{2max(u, v) + \sqrt{\frac{C}{i_o}}}, 0 < \mu < 1$$
 (CFL-condition)

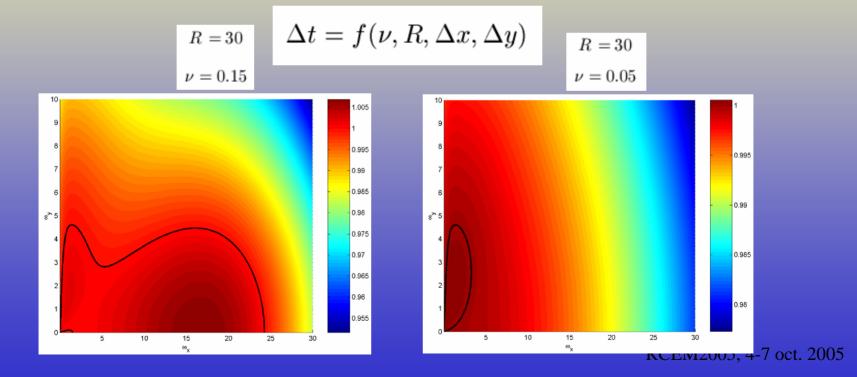
-Consistency:
$$\frac{\Delta x^2}{\Delta t}, \frac{\Delta y^2}{\Delta t} \to 0$$

- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

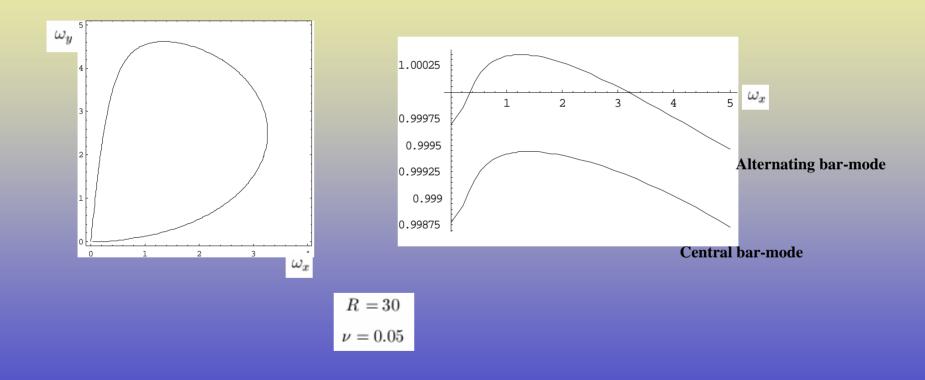
Bed: FTCS

- Von Neumann analysis: $z_{i,j}^n = g^n e^{i(i\omega_x \Delta x + j\omega_y \Delta y)}$

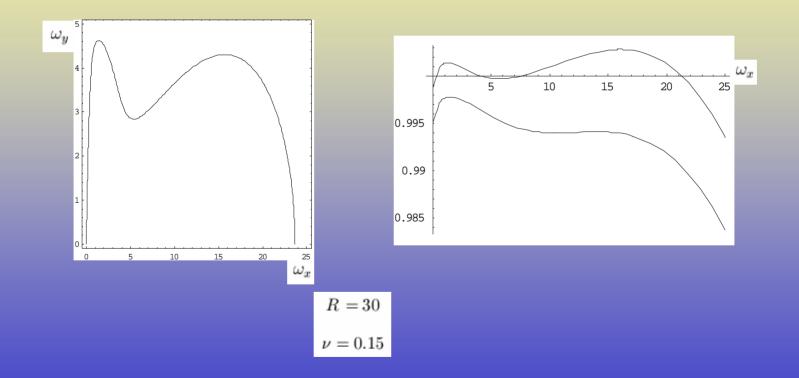
$$g(\theta,\phi) = 1 + \frac{2\Delta t}{R} \Big(\frac{\cos(\theta) - 1}{\Delta x^2} + \frac{\cos(\phi) - 1}{\Delta y^2} \Big) - i\Delta t \Big(b\frac{\hat{u}}{\hat{z}}\frac{\sin(\theta)}{\Delta x} + \frac{\hat{v}}{\hat{z}}\frac{\sin(\phi)}{\Delta y} \Big) = 0.$$



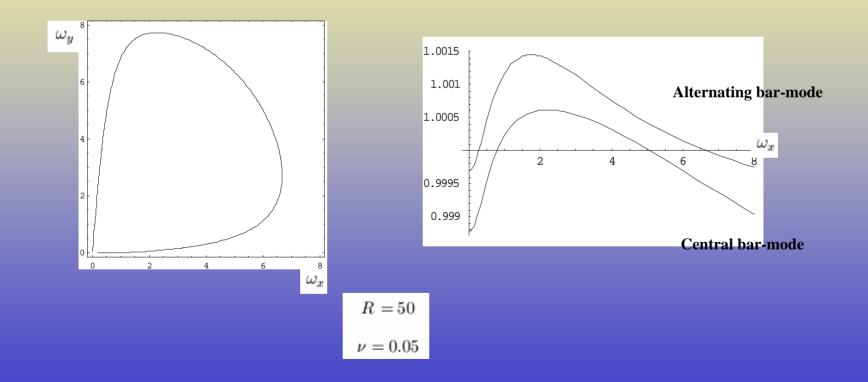
- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

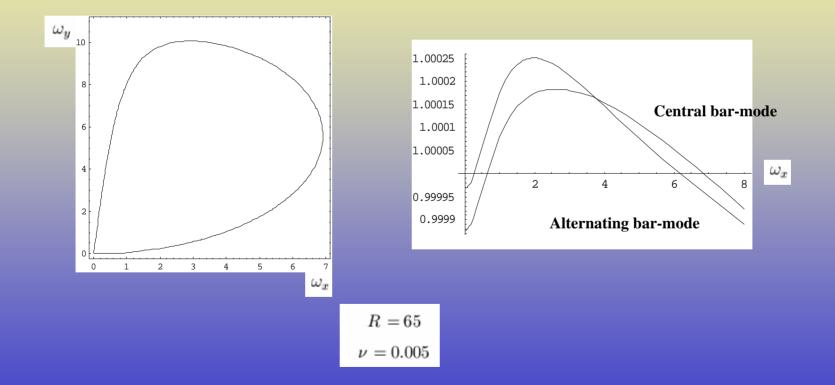


- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)



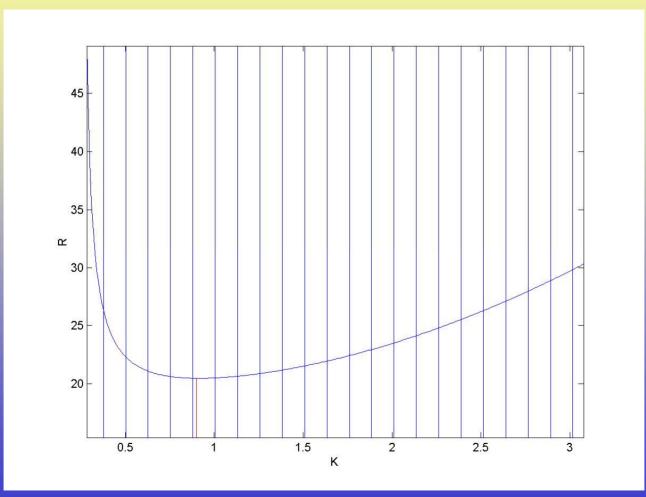
- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)



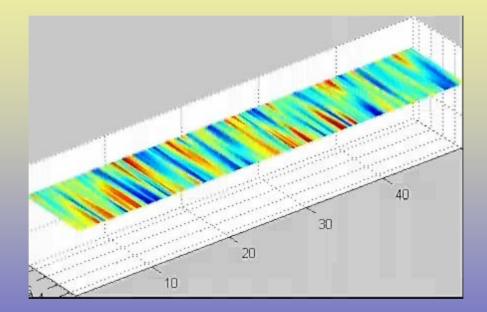


- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

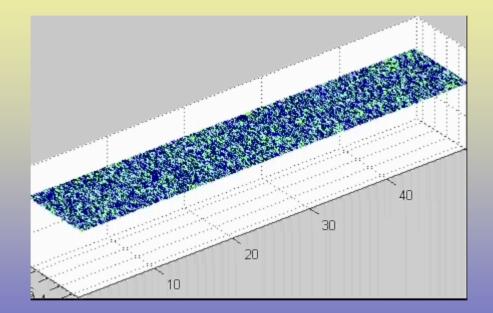
Periodic boundary conditions



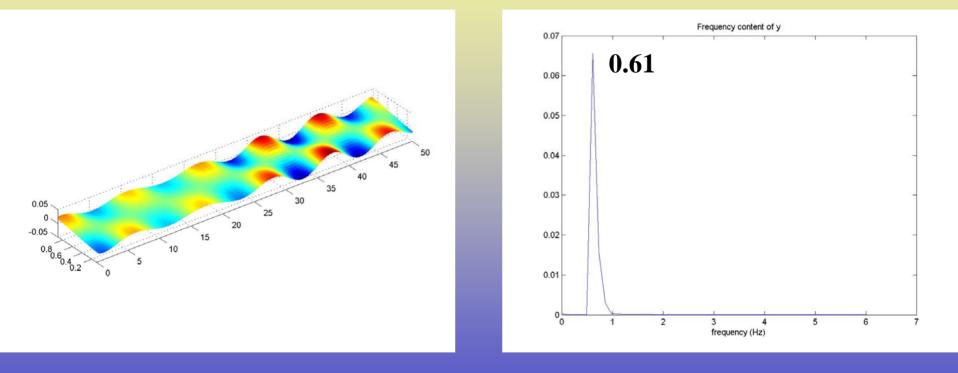
R=50, arbitrary bed profile



R=50, initial formation

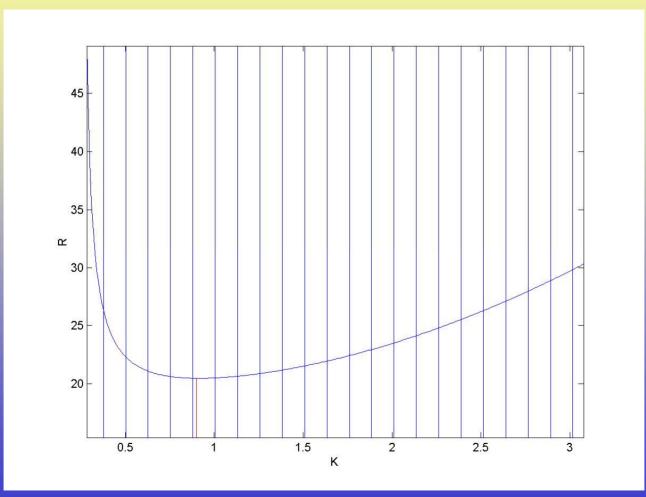


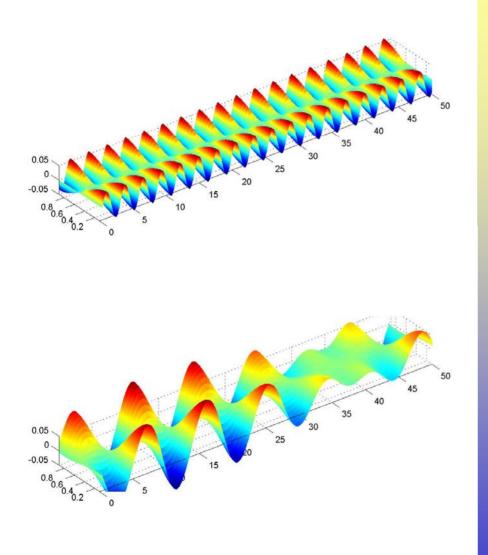
R=50, end situation



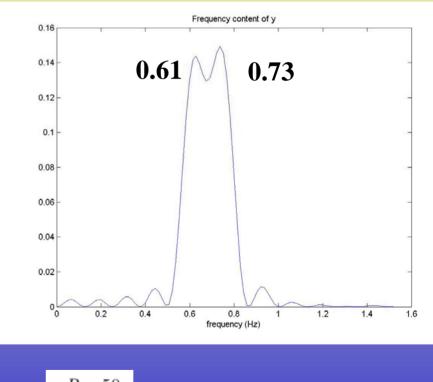
- Decoupling of flow and bed
- Flow: Lax-Friedrichs
- Bed: FSCT
- Periodic boundary conditions (!)

Periodic boundary conditions



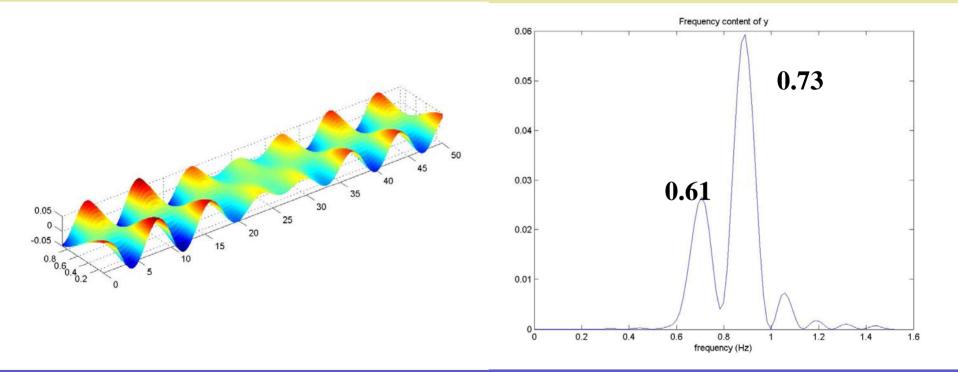


Results: R=50, multiple bars



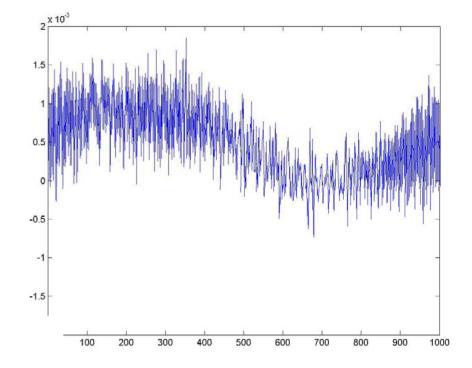
R = 50 $\nu = 0.05$

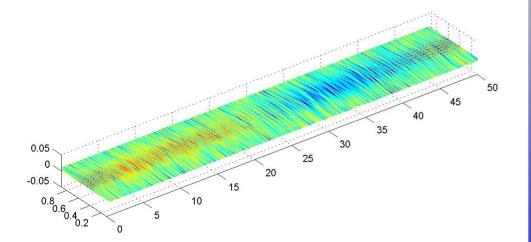
Results: R=60



R = 60 $\nu = 0.05$

Central bars ?





C=0.07, b=10

Conclusions

- Alternating bars can be reproduced adequately
- Typical bar-shape is missing
- Strongly nonlinear results are not present
- Selection of unstable modes is unclear

Further steps

- More physics such that more complex behaviour becomes possible
- Open boundaries
- Faster, mass-conserving schemes
- Bank-erosion
- Reproduce meander-characteristics
- Sediment distribution on confluents and bifurcations

Conclusions

- Critical wave number is reproduced
- For large values of R alternating bar pattern (singe and mixed modes)
- Selection of spectrum is unclear
- Typical bar pattern is not present
- Strongly nonlineair pattern is not present
- Central bars are not possible with this model