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THRESHOLD OF MOTION
Brief sketch of the concept of critical Shields stress

•µc = coefficient of Coulomb friction, θr = angle of repose of sediment
•uf = effective flow velocity acting on an “exposed” bed particle
•cD = drag coefficient for an “exposed bed particle
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Reduce to get Shields criterion

Define the dimensionless Shields number 
τ* characterizing sediment mobility as RgD
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Then the critical Shields number τc* at the 
threshold of motion is given as (e.g. Ikeda, 
1982)
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SHIELDS DIAGRAM contd.

The previous analysis is merely a sketch.
In order to include the full range of grain sizes it is necessary to include 

viscous effects (e.g. Ikeda, 1982).

Parker’s emendation of Brownlie’s (1982) fit to the Shields (1936) curve 
so as to agree with results of Neill (1968):
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Note that τc* → 0.03 as Rep → ∞
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Shields Diagram
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CASE OF SIGNIFICANT STREAMWISE SLOPE

Let α denote the angle of streamwise tilt of the bed, so that

α= tanS
Let the value of τc* predicted by the previous formula be amended to τco

*, 
where τco* denotes the critical Shields stress for the case S << 1 (most 
cases of interest).  In the case of significant streamwise tilt, 
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Shields Relation, Streamwise Angle
θr = 35 deg
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CASE OF TRANSVERSE SLOPE
Let ϕ denote the angle of transverse tilt of the bed

fluid drag ϕ
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A general formulation of the threshold of motion for 
arbitrary bed slope is given in Seminara et al. (2002).
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Shields Relation, Transverse Angle
θr = 35 deg
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CONDITION FOR “SIGNIFICANT” SUSPENSION OF 
SEDIMENT

Typical near-bed velocity fluctuation associated 
with turbulence ~ fall velocity, or thus

svu =∗

Reducing with fall velocity relation,
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Shields Diagram
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SKIN FRICTION AND FORM DRAG
Sediment transport often creates 
bedforms such as dunes, which in turn 
affect sediment transport
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EINSTEIN DECOMPOSITION
Einstein (1950); Einstein and Barbarossa (1952)

When bedforms are present, much of the resistance to the flow is 
associated with energy loss in the lee of the bedforms.  This “form 
drag” cannot be expected to contribute to bedload transport or 
entrainment into suspension.  Only the “skin friction” should 
mobilize sediment
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EINSTEIN DECOMPOSITION contd.
Consider an equilibrium flow over a bed with mean streamwise
slope S that is covered with bedforms.
The flow has average depth H and velocity U averaged over 
depth the bedforms.  The boundary shear stress averaged over 
the bedforms is given by the relation
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EINSTEIN DECOMPOSITION contd.
Now smooth out the bedforms, “glue” the sediment to the bed so it 
remains flat but offers the same microscopic roughness as the case with 
dunes, and run a flow over it with the same mean velocity U and bed 
slope S.  In the absence of the bedforms, the resistance is skin friction 
only.  Due to the absence of bedforms the skin friction coefficient Cfs and 
the flow depth Hs should be less than the corresponding values with 
bedforms.
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EINSTEIN DECOMPOSITION contd.
τbf = τb - τbs = mean bed shear stress due to form drag of bedforms
Cff = Cf – Cfs = friction coefficient associated with form drag
Hf = H – Hs = mean depth associated with form drag
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SKIN FRICTION AND FORM DRAG PREDICTORS
Skin friction
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Form drag: empirical relation of Engelund and Hansen (1972)
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Note that bedforms are absent (skin friction only) when τs* =  τ*;
bedforms are present when τs* <  τ*;
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Engelund-Hansen Bedform Resistance Predictor
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FORM DRAG contd.
Engelund-Hansen tends to work well for sand-bed streams 

at laboratory and small field scale, but work poorly for 
large, low-slope sand-bed rivers.

Wright and Parker (2003) have modified it to accurately 
cover the entire range. 
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In Wright-Parker applied to large sand-bed streams, dunes 
do not wash out at flood flows.
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RELEVANCE OF DECOMPOSITION TO THE PREDICTION 
OF SEDIMENT TRANSPORT AND MORPHODYNAMICS

It all depends on what you want to do.
•In calculating bedload transport and entrainment into 
suspension over a flat bed, you can use the total boundary 
shear stress τb.
•In a stability analysis to explain the formation of small 
scale bedforms (see lectures of Blondeaux), the base 
state is a flat bed.
•If the bed is covered with dunes, the total boundary shear 
stress τb must be decomposed into skin friction τbs and 
form drag τbf, and only the skin friction should be used 
in computations of bedload transport and entrainment into 
suspension.
•In a stability analysis to explain the formation of large 
scale bedforms (e.g. bars on the continental shelf), the 
base state often includes small-scale bedforms, requiring a 
boundary shear stress decomposition.
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RELATIONS FOR BEDLOAD TRANSPORT

THE SIMPLEST CASE IS 1D BEDLOAD TRANSPORT OVER A BED 
FOR WHICH BED SLOPE S IS NOT TOO LARGE (< 0.05?)

The formulations are long, so only essential results are quoted here.
qbx → qb = volume bedload transport per unit width [L2T-1].
gb = ρsqb = mass bedload transport per unit width [L2T-1].

The archetypal form of bedload transport relations.
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THE MOTHER OF ALL MODERN BEDLOAD TRANSPORT 
RELATIONS: Meyer-Peter and Müller (1948)

Original (and very famous) form:

( ) 047.0,8q c
5.1

csb =ττ−τ= ∗∗∗∗

Corrected form due to Wong and Parker (2003)

( ) 0495.0,97.3q c
5.1

csb =ττ−τ= ∗∗∗∗

In both cases τc* is determined from data-fitting, and is much 
higher than an realistic threshold condition for motion.
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Bedload Relation: Modified MPM
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A SMORGASBORD OF BEDLOAD RELATIONS

( ) 042.0~03.0,7.5q c
5.1

csb =ττ−τ= ∗∗∗∗ Fernandez Luque & van 
Beek (1976)

( )( ) 05.0,17q ccscsb =ττ−ττ−τ= ∗∗∗∗∗∗ Ashida & Michiue (1972)

( )( ) 05.0,7.074.18q ccscsb =ττ−ττ−τ= ∗∗∗∗∗∗ Engelund & Fredsoe
(1976)

∗

∗−τ+

−τ−

−

+
=

π
− ∫

∗

∗

b

b2)/143.0(

2)/143.0(

t

q5.431
q5.43dte11 s

s

2 Einstein (1950)

( ) 03.0,12.11q c

5.4

s

c5.1
sb =τ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
τ
τ

−τ= ∗
∗

∗
∗∗ Parker (1979) fit to Einstein 

(1950)



National Center for Earth-surface Dynamics:
Renesse 2003: Non-cohesive Sediment Transport

MILD TILT OF BED IN TRANSVERSE DIRECTION: BEDLOAD 
IS PULLED LATERALLY AS WELL AS DOWNSTREAM
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Linearized formulation:

In the absence of tilt the 
bedload transport vector is 
aligned with the vector of 
boundary skin friction.
In the presence of tilt the 
particles also are impelled by 
gravity down the slope
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APPLICATION OF LINEARIZED FORMS

•Compute qbx from an existing 1D model (but using critical 
Shields number that is modified for bed tilt.
•Compute qby from the above value of qbx, the vector of boundary 
skin friction and the transverse slope of the bed.
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SMORGASBORD OF RELATIONS FOR TRANSVERSE 
BEDLOAD TRANSPORT

µc = static Coulomb friction coefficient, µd < µc = 
dynamic Coulomb friction coefficient
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FULLY NONLINEAR RELATIONS FOR THE TRANSPORT OF 
BEDLOAD ON ARBITRARILY TILTED BEDS

The formulation is too complicated to go into here.
But see:

Kovacs, A. and G. Parker, 1994, “A new vectorial bedload formulation 
and its application to the time evolution of straight river channels,” J. 
Fluid Mech., 267, 153-183.

Parker, G., L. Solari, L. and G. Seminara, “Bedload at low Shields 
stress on arbitrarily sloping beds: alternative entrainment formulation,”
Water Resources Research, in press (preprint available on request).
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SHEET FLOW

•For values of τs* < a threshold value τsheet*, bedload is localized in 
terms of rolling, sliding and saltating grains that exchange only with the 
bed surface.

•When τs* > τsheet* the bedload layer devolves into a sliding layer of 
grains that can be many grains thick.  Sheet flows occur in 
unidirectional river flows as well as bidirectional flows in the surf zone.

•Values of τsheet* have been variously estimated as 0.8 ~ 1.5. 
(Horikawa, 1988, Fredsoe and Diegaard, 1994, Dohmen-Jannsen, 
1999)
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SHEET FLOW
Experiments of Peng and Abrahams
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