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ABSTRACT 
Mountain gravel-bed rivers typically display a surface layer that is armored.  That is, the 
surface layer visible at low flow is coarser than both the substrate and mean annual 
bedload transported.  The surface layer is difficult to sample at the high flows that 
transport most of the gravel.  As a result, the question as to whether the surface layer 
remains armored at high flows is something of a mystery.  The few measurements 
available suggest that some form of armoring may be in place at high flows as well. In 
lieu of more measurements, numerical modelling provides an avenue to explore this 
issue.  Research results are presented using a 1D model of aggradation and degradation to 
mobile-bed equilibrium in gravel-bed streams. In the model, a hydrograph is cycled 
repeatedly so that water discharge goes up and down in time. The magnitude of the 
bedload feed rate and the size distribution of the feed material are, however, held constant 
at the upstream end of the reach. As a result, the final mobile-bed equilibrium attained is 
characterized by a bed at the upstream end of the reach that cyclically degrades and 
coarsens at high flow (when the sediment feed rate is not sufficient) and aggrades and 
becomes finer at low flow (when there is an excess of sediment feed). Only a short 
distance downstream, however, a remarkable tradeoff occurs. The bed adjusts so that 
over the great majority of the modelled reach the bed elevation and surface size 
distribution become invariant in time, hardly changing at all from low flow to high flow. 
The bedload transport rate and size distribution, however, fluctuate strongly with the 
hydrograph. That is, the higher flows support a higher transport rate of coarser material 
and the lower flows support a lower transport rate of finer material. The implication is 
that rivers subject to repeated hydrographs can evolve so that neither surface grain size 
distribution nor mean bed elevation (averaged over bars) need change much with flow, 
nearly all the variation being absorbed by the bedload. If this is true, it provides a most 
useful result; the surface grain size distribution seen at low flow may be very close to that 
seen at high flow. The results have been verified with two transport relations, that of 
Parker and that of Wilcock and Crowe.  The reasons behind this simple result are 
explored in terms of a “hydrograph boundary layer,” downstream of which the effect of 
the hydrograph on bed elevation and surface size distribution become negligible.  The 
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results of the numerical model also indicate that for a given hydrograph, the degree to 
which the surface is armored relative to the grain size distribution of the feed sediment 
decreases with increasing gravel feed rate. 
 
Keywords: gravel rivers, armor, hydrograph, bedload 
 
1.  INTRODUCTION 
 
The topic of this paper can be introduced in terms of a metaphor.  The metaphor is based 
on a three-panel cartoon from the “Far Side” series of Gary Larson (1984).  In the top 
panel, four cows are standing on their two hind legs, looking perfectly at ease, when one 
of them shouts “car!”.  Just before the car passes by, all four cows hurriedly change to a 
four-legged stance.  After the car passes by, the cows relax and revert to standing on their 
two hind legs. 
 
The implication is that only when we see them, the cows are standing on four legs, but 
when we cannot see them, they are standing on two legs.  There is no way for us to verify 
that they really stand on two legs when we are not looking, because the act of our looking 
causes them to change their stance to four legs.  So we have to accept their two-legged 
stance as an article of faith. 
 
Many rivers show a coarse surface layer, or armor at low flow.  An example is given in 
Figure 1 in terms of the River Wharfe, U.K.  It has often been assumed that this armor is 
“washed out,” or at least strongly subdued, during flood flows.  But it is precisely in the 
middle of flood flows when it is impossible to verify this hypothesis.  For example in 
Figure 2a the Elbow River, Canada is shown at low flow; in Figure 2b it is shown at a 
flow estimated to be close to the 100-year flood.  The Elbow River is known to be 
armored at low flow (Hollingshead, 1971).  Is it armored at high flow, or not?  Is there 
any way of finding out? 
 
Some evidence suggests that the armor layer might still be present in at least some form 
at flood flows capable of moving most of the available sizes.  For example, Parker et al. 
(1982) and Parker and Klingeman (1982) report experiments on gravel transport for 
which an armor layer was observed to be in place even under conditions of rather intense 
bedload transport.  Andrews and Erman (1986) performed measurements in Sagehen 
Creek, USA during a snowmelt storm which mobilized gravel sizes coarser than the 
surface median size, and found that an armor layer similar to the one observed at low 
flow remained in place.  Wilcock et al. (2001) performed experiments on mobile-bed 
transport of heterogeneous gravel in which the armor layer was not only present for all 
flows, but varied little over a wide range of flow conditions.  More recently, Wilcock and 
DeTemple (2005) have provided an indirect indication of the persistence of an armor 
layer over a flood in Oak Creek. USA.  They used the surface-based transport relation of 
Wilcock and Crowe (2003) and the measured data for bedload magnitude and size 
distribution of Milhous (1972) to back-calculate the surface grain size distribution.  Their 
results indicate a surface grain size distribution that does not change as flow and transport 
rate increase, instead remaining essentially the same as the surface grain size distribution 
measured at low flow. 
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So is it possible to say that gravel-bed rivers should always be armored?  The answer, of 
course, is no.  Figure 3 shows the Nahal Yatir in Israel, a gravel-bed river which is 
unarmored at low flow, and might be assumed to be unarmored at high flow (Powell et 
al., 2001).  Such streams are relatively common in arid environments. 
 
This paper is focused on the way in which a gravel-bed river adjusts to a cycled 
hydrograph that ranges from low flow to flood flow.  The analysis is based on a 1D 
numerical model.  It yields a fascinating conclusion: rivers can adjust over cycled 
hydrographs so that their surface layers become invariant to the specific discharge of the 
hydrograph.  The conclusion is partial and tentative, because real rivers are not 1D 
entities and numerical models are less than perfect expressions of reality.  If the result is 
borne out by more detailed field and experimental measurements, however, it has the 
potential to greatly simply gravel transport calculations.  In particular, it implies that the 
surface grain size distribution to be used in a surface-based calculation of bedload 
transport during a flood may be approximated by the surface distribution measured at low 
flow (when the bed is accessible). 
 
Or put in terms of the introductory metaphor, the cows are likely always standing on four 
legs, whether we are watching or not. 
 
2.  SUMMARY OF THE CONFIGURATION AND THE ESSENTIAL RESULT 
 
The very simple configuration illustrated in Figure 4 is considered.  The river is treated as 
a sediment-feed flume with constant width, vertical sidewalls and specified length.  
Downstream bed elevation is held constant.  Water is fed into the flume at a rate that 
varies cyclically, so representing a repeated hydrograph including a wide range of 
discharges.  In implementing the hydrograph, it is possible to discard flows at which bed 
sediment is not moved in significant amounts.  A smooth hydrograph must be be 
discretized into steps in order for implementation in a numerical model. 
 
Gravel (gravel/sand) is also fed into the flume at the same upstream point as the water.  
The software developed for the present study allows for the gravel input rate to vary 
cyclically in time as well.  In the present implementations, however, the rate and grain 
size distribution of the upstream gravel (gravel/sand) are held constant. 
 
If the above configuration is sustained for a sufficiently long time, a mobile-bed 
equilibrium is eventually reached.  The equilibrium can strictly be defined, however, only 
as an average over the hydrograph.  What are the characteristics of this equilibrium? 
 
Since the input rate and grain size distribution of the feed sediment are held constant over 
the repeated hydrograph, one might expect that the bed cyclically degrades and coarsens 
during the higher flows of the hydrograph, and then aggrades and becomes finer over the 
lower flows of the hydrograph.  The numerical results reported here suggest, however, 
that this behavior is limited to a very short reach downstream of the feed point.  This 
reach may be termed a “hydrograph boundary layer,” where “boundary layer” is used in 
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the mathematical sense of a restricted zone over which a variable changes strongly 
(Nayfeh, 1993).  Downstream of this hydrograph boundary layer a remarkable tradeoff 
occurs.  Bed slope and bed surface grain size distribution become essentially invariant 
with discharge on the hydrograph (and thus time) and distance downstream.  Instead, the 
magnitude and grain size distribution of the bedload vary cyclically with position on the 
hydrograph (but do not vary with distance downstream). 
 
3.  QUANTIFICATION OF THE CONFIGURATION 
 
Again the very simple configuration illustrated in Figure 4 is considered.  The river has 
constant width B, no floodplain, vertical sidewalls and constant length L.  Sidewall 
effects are neglected for simplicity.  The downstream bed elevation η is fixed at 0; thus 
where x denotes streamwise distance from the sediment feed point, 
 0

Lx
=η

=
        (1) 

Water is introduced to the flume at the upstream end (x = 0) at flow discharge Qw(t), 
where t denotes time.  Here Qw(t) is allowed to vary cyclically so as to simulate a 
periodic hydrograph. 
 
The river is assumed to be sufficiently steep and the reach sufficiently short so that flood 
waves traverse the reach in a time that is very short compared to the characteristic time of 
morphodynamic evolution.  As a result, all flows can be accurately described using the 
normal (steady, uniform) approximation, with the discharge at any point in the flow 
(nearly) instantaneously adjusting to the upstream value Qw(t).  This assumption is often 
reasonable for reaches of mountain gravel-bed rivers not longer than a few 10’s of km. 
 
A heterogeneous mixture of gravel (or gravel and sand) that moves as bedload is also fed 
in at the upstream end of the flume.  For simplicity, this is assumed to be fed in at a 
constant rate, and to have a constant feed grain size distribution.  Consider N grain size 
bins i = 1..N, each with characteristic size Di.  Let qbi denote the volume bedload 
transport rate per unit width in the ith grain size range.  The total volume bedload 
transport rate per unit width summed over all grain sizes is given as 

 ∑
=

=
N
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The volume fraction of bedload in the ith grain size range is denoted as 
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bi q
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The feed values of qbi, qbT and pbi are denoted respectively as qbfi, qbfT and pfi, such that 
 bfi0xbibTf0xbTbfi0xbi pp,qq,qq ===

===
   (4a,b,c) 

Here these feed values are held constant over the hydrograph.  That is, in a given 
numerical experiment the magnitude and grain size distribution of the sediment feed are 
held constant, even though the water discharge is varying cyclically. 
 
4.  EXNER EQUATION OF SEDIMENT CONSERVATION 
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The Exner equation of sediment conservation for mixtures used here is that of Parker and 
Sutherland (1990).  The bed is divided into an upper “active” (“surface”, “exchange”) 
layer and a lower substrate.  The active layer consists of the gravel that exchanges 
directly with bedload transport.  The active layer exchanges sediment with the substrate 
as the bed aggrades (transfer from active layer to substrate) or degrades (transfer from 
substrate to active layer). 
 
As noted in Figure 4, the active layer has thickness La(x, t), the notation indicating that 
thickness may vary in both time and distance downstream.  The volume fraction of 
material in the ith grain size range in the active layer, or surface fraction Fi may also vary 
in x and t, but the active layer is approximated as having no vertical structure.  As the bed 
aggrades or degrades, the fraction in the ith grain size range exchanged at the interface 
between the bottom of the surface layer and the top of the substrate is denoted as fIi.  
Denoting bed porosity as λp, the grain size-specific Exner equation of sediment 
continuity takes the form 
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Summing the above equation over all grain sizes and recalling that 
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it is found that 
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Reducing (4) with (6) results in the relation 
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Thus (6) describes the evolution of bed elevation and (7) describes the evolution of the 
surface grain size distribution. 
 
In implementing the above equation it is necessary to specify the thickness La of the 
active layer and the interfacial exchange fractions fIi.  Here the thickness of the active 
layer is specified as an order-one multiple of the surface size Ds90 such that 90 percent of 
the sediment is finer: 
 90saa DnL =          (8) 
where na is an order-one dimensionless parameter.  The interfacial fractions are specified 
as follows.  The substrate is likely to contain its own stratigraphy, so that substrate 
fractions fi vary with vertical distance z (in addition to x).  As the bed degrades, the 
substrate just below it is mined into the active layer.  As the bed aggrades, some mixture 
of bedload and active layer material is transferred to the substrate.  Thus 
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where α is a specified parameter between 0 and 1 (Hoey and Ferguson, 1994; Toro-
Escobar et al., 1996). 
 
5.  FLOW HYDRAULICS 
 
The flow hydraulics is computed using a simple normal (steady, uniform) flow 
approximation that is often suitable for mountain streams.  Water discharge Qw is related 
to water discharge per unit width qw, flow depth H and depth-averaged flow velocity U as 
 UHBBqQ ww ==         (10) 
The Manning-Strickler relation of Parker (1990) is used to compute flow resistance; 
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In the above relation Cf is a dimensionless bed friction coefficient, αr takes a value of 8.1, 
ks denotes a roughness height, related here to surface size Ds90 as 
 90sks Dnk =          (12) 
where nk is another order-one coefficient here set equal to 2 and ∗u  denotes a shear 
velocity, related to bed shear stress τb as 
 2

b u∗ρ=τ          (13) 

where ρ denotes water density.  In the present analysis all resistance is assumed to be 
skin friction; form drag is neglected for simplicity. 
 
According to the normal flow approximation, τb is related to the depth-slope product as 
 gHSb ρ=τ          (14) 
where S denotes bed slope.  Between (10), (11), (13) and (14) it is found that the shear 
velocity ∗u  can be computed from the local bed slope S and local roughness height ks 
(and the water discharge per unit width qw, which varies in time but not space) as 
 20/720/1

s
10/3

w
20/710/3

r )t,x(S)]t,x(k[)]t(q[g)t,x(u −
∗ α=     (15) 

Note that the above equation is dimensionally homogeneous. 
 
6.  SURFACE-BASED BEDLOAD TRANSPORT FORMULATION 
 
The analysis presented here is restricted to the case of bedload transport of either gravel, 
or gravel with some admixture of sand.  In order to compute the evolution of the fractions 
Fi in the surface (active, exchange) layer as the bed evolves, it is necessary to tie the 
bedload transport rate of the ith size range to the availability of this size range in the 
surface layer.  Several formulae are presently available to do this, including Parker 
(1990), Powell et al. (2001), Hunziker and Jaeggi (2002) and Wilcock and Crowe (2003).  
Here calculations are performed with the relation of Wilcock and Crowe (2003).  It 
should be pointed out, however, that calculations with the relation of Parker (1990) 
illustrate that the essential conclusions of the analysis are independent of the specific 
bedload formulation used. 
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All of the above bedload transport relations can be cast in a form such that they predict a 
dimensionless bedload transport rate ∗

iW  for the ith grain size range, which is related to 
the volume transport rate per unit width qbi as 

 *
i

3

ibi W
Rg
uFq ∗=         (16) 

where R denotes the submerged specific gravity of the sediment, given as 

 1R s −
ρ
ρ

=          (17) 

and ρs denotes the material density of the sediment.  For natural sediments R is often 
close to 1.65.  Details of the relation of Wilcock and Crowe (2003) are not presented 
here; these can be found in the original reference and Parker (2004).  Instead, brief 
summaries of input parameters are given. 
 
In the case of the relation of Wilcock and Crowe (2003), in order to compute ∗

iW  it is 
necessary to know a) the shear velocity ∗u , b) the submerged specific gravity of the 
sediment R, c) the surface grain sizes and fractions (Di, Fi) and d) the surface geometric 
mean size Dsg and the fraction of sand Fs in the surface layer, both of which can be 
computed from (Di, Fi).  Note that sand is specifically included, and that varied sand 
content in the surface layer can have a strong effect on the transport rate of gravel-sized 
material. 
 
7.  FLOW OF THE CALCULATION 
 
In order to perform a calculation, the following dimensionless parameters must be 
specified in advance: bed porosity λp, coefficient na in (8) describing active layer 
thickness, coefficient α describing transfer to the substrate as the bed aggrades, 
coefficient αr in the resistance relation (11), coefficient nk in the relation for the 
roughness height (12) and the submerged specific gravity R of the sediment.  In addition, 
the characteristic grain sizes Di, i = 1..N must be specified.  Finally, the cyclic variation 
of water discharge per unit width with time qw(t) must be specified. 
 
The flow of the calculation is as follows.  At any given time t the bed profile η(x, t), and 
surface fractions Fi(x, t) are taken to be known.  Bed slope S is computed as 
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S
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The surface fractions Fi are used to compute Ds90, Dsg, Fs everywhere.  La and ks are 
everywhere computed from (8) and (12), respectively.  Shear velocity )t,x(u*  is then 
computed everywhere from (15).  A knowledge of ∗u , Ds90, Dsg, Fs allows computation 
of ∗

iW  from the relation of Wilcock and Crowe (2003), and thus qbi(x, t) everywhere 
from (16).  The parameters qbT  and pbi are then computed from (2) and (3). 
 
The bed elevation profile one time step later, i.e. at time t + ∆t, is then computed from a 
discretized version of (6), i.e. 
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Equation (6) also directly estimates ∂η/∂t; 
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which then allows evaluation of fIi everywhere from (9).  The surface fractions one time 
step later are then evaluated from (7) as 
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In principle (21) requires an iterative solution due to the presence of the term ∂La/∂t, but 
this term is typically small, and can usually be evaluated from the previous time step. 
 
The boundary conditions on the above formulation are (1), which specifies a fixed 
downstream bed elevation, and (4a,b), which specify a fixed feed rate and feed grain size 
distribution of sediment.  The initial conditions consist of a specified initial bed slope, 
and specified initial grain size distributions for the bed surface and substrate. 
 
The reach of length L is discretized into M intervals, each with length ∆x = L/M, 
bounded by M + 1 nodes.  The node k = 1 denotes the node farthest upstream and the 
node k = M + 1 denotes the node farthest downstream.  Sediment is fed in at a ghost node 
one step upstream of the node k = 1. 
 
Spatial derivatives involving sediment transport parameters (qbT, qbi) are computed using 
an upwinding scheme, e.g. at the kth node, 
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In the above relation au is an upwinding coefficient.  A value of au of 0.5 corresponds to a 
central difference scheme, and a value of au satisfying the conditions 0.5 < au ≤ 1 
corresponds to an upwinded scheme. 
 
8.  OUTLINE OF AND INPUT FOR THE NUMERICAL RUNS 
 
Numerical runs are performed for both a cycled hydrograph and a constant flow 
corresponding to the average of that hydrograph.  The hydrograph chosen for 
implementation is a discretization of a 4.5-day symmetrical triangular hydrograph with a 
beginning and end flow discharge per unit width of 2 m2/s and a maximum flow 
discharge per unit width of 20 m2/s.  The average flow of the hydrograph is 10 m2/s.  The 
hydrograph and its average flow are shown in Figure 5.  The hydrograph (or its 
equivalent constant flow) is run once per year for 4.5 days.  The river is taken to be 
morphologically inactive for the rest of the year. 
 
The sediment feed is taken to be the bimodal mix of gravel and sand given Figure 6.  This 
distribution has median size Dl50f (l = load, 50 = median, f = feed) of 32 mm, a geometric 
mean size Dlgf (l = load, g = geometric mean, f = feed) of 16.22 mm and a fraction of 
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sand Fslf (s = sand, l = load, f = feed) of 0.25.  The initial surface and substrate size 
distributions at t = 0 are taken to be identical to that of the feed sediment. 
 
The following parameters are specified in the calculation as follows: R = 1.65, na = 2, nk 
= 2, λp = 0.4, αr = 8.1, α = 0.5, au = 0.75.  The initial bed slope is a constant specified 
value.  This value was chosen to be not too far from the expected value in order to 
minimize the amount of computational time to reach a final mobile-bed equilibrium.  In 
all numerical experiments L = 20,000 m and M = 20, so that ∆x = 1000 m. 
 
Eleven runs, i.e. Runs 1H, 2H, 3H… 11H were conducted with the hydrograph of Figure 
5.  Eleven more runs, i.e. 1C, 2C, 3C… 11C  were conducted with the average flow of the 
hydrograph also shown in Figure 5.  The input parameters are specified in Table 1 
(hydrograph runs) and Table 2 (constant-flow runs).  It is seen there that sediment feed 
rates qbTf vary over a wide range, from 1x10-6 m2/s to 1x10-1 m2s.  Also shown in the 
Table 1 are initial bed slope SI, time step during a flood ∆tf, number of time steps per step 
on the flow hydrograph (during the flood) nstep and time duration Tdur of the calculation.  
Also shown in Table 2 are SI, Tdur and time step ∆t (real time including flood time and 
inactive time). 
 
9.  RESULTS FOR CONSTANT FLOW AT MOBILE-BED EQUILIBRIUM 
 
Before analyzing the case of a hydrograph, it is of value to briefly discuss the results for 
the equivalent constant flows.  The results analyzed here are for the 11 runs of Table 2.  
Recall that water discharge per unit width is held at 10 m2/s for 4.5 days of the year for 
all runs, but that the sediment feed qbTf rate varies from a high rate of 1x10-1 m2/s for Run 
1C to a low of 1x10-6 m2/s for Run 11C. 
 
Figure 7 shows plots of the following three parameters versus sediment feed rate qbTf at 
final, mobile-bed equilibrium; bed slope S, surface geometric mean size Dsg and 
geometric mean size of the feed sediment Dlgf.  Note that the feed rate qbTf is everywhere 
equal to the transport rate qbT in the case of mobile-bed equilibrium at constant flow. 
 
The diagram shows that bed slope S increases, and surface geometric mean size Dsg 
decreases with increasing qbTf.  At very low values of qbTf the bed approaches a static 
armor, and S and Dsg show values near 0.0013 and 100 mm, respectively, that change 
only weakly with qbTf.  S increases ever more sharply with higher values of qbTf, reaching 
a value near 0.026 for qbTf = 0.1 m2/s.  Likewise, the surface geometric mean size Dsg 
decreases toward the geometric mean of the feed sediment at high value of qbTf, 
indicating that the surface layer is approaching an unarmored state compared to the 
sediment transported.  In between these two limits is a wide range for which a) the bed is 
armored under mobile-bed conditions, and b) the geometric mean size of the armor 
gradually becomes finer with increasing qbTf.  This result suggests that a mobile-bed 
armor might be expected under flood conditions prevailing in a stream such as the River 
Wharfe (Figure 1), which likely has modest gravel supply, but might be absent under 
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flood conditions in a stream such as the Nahal Yatir (Figure 3), which has an extremely 
high gravel supply (Powell et al., 2001). 
 
In Figure 8 the fraction of sand in the surface layer Fss (first s = sand, second s = surface) 
and the fraction of sand in the bedload feed material feed Fslf (s = sand, l = load, f = feed) 
are plotted against qbTf.  (The plot shows percentages rather than fractions.)  The 
percentage sand in the feed Fslf has been held constant at 25 percent for all runs.  At the 
lowest feed rate qbTf of 1x10-6 m2/s the surface layer contains only 0.56 percent sand.  
The percentage of sand in the surface layer rises with increasing qbTf, until at the highest 
feed rate qbTf a value of 19 percent is attained.  Thus sand is nearly absent from the 
surface layer at sediment transport rates rates low enough to correspond to a nearly static 
armor, even though the load is 25 percent sand.  When the sediment transport is 
sufficiently high, the percent sand in the surface layer approaches that of the load (nearly 
unarmored).  In between is a range of mobile armor for which sand is present in the 
surface layer, but at a noticeably lower percentage than in the load. 
 
Figure 9 shows the grain size distributions for the feed, and for the surface layer at 
mobile-bed equilibrium for all 11 runs of Table 2.  The progression with increasing feed 
rate qbTf from nearly static armor to mobile armor, and then to a state for which the bed is 
nearly unarmored is readily apparent from the figure. 
 
10.  RESULTS FOR CYCLED HYDROGRAPHS: FORMATION AND 
SIGNIFICANCE OF THE HYDROGRAPH BOUNDARY LAYER 
 
The 11 runs with cycled hydrographs are those summarized in Table 1.  Before 
discussing the results of the numerical modelling, however, it is important to review the 
constraints on the experiments. 
 
In every numerical run an identical hydrograph (that of Figure 5) is repeated once 
annually for hundreds to hundreds of thousands of years until a mobile-bed equilibrium 
state is reached.  In each numerical run the sediment feed rate qbTf is held constant over 
the hydrograph.  This constant feed rate varied from 1x10-1 m2/s in Run 1H to 1x10-6 m2/s 
in Run 11H. 
 
Because of this configuration, a mobile-bed equilibrium cannot consist of a constant 
state.  Instead, it must consist of a state in which exactly the same cycle is repeated over 
and over.  Now what might this cycling equilibrium consist of? 
 
At the very upstream end, water discharge fluctuates up and down, but the sediment feed 
rate and grain size distribution are held constant.  As a result, one might expect the bed to 
cyclically a) degrade and coarsen at the high flows, when the transport capacity exceeds 
the feed rate, and b) aggrade and become finer at the low flows, when the transport 
capacity is less than the feed rate. 
 
The numerical runs reveal, however, a fascinating result.  The above, “expected” 
behavior is realized only in a relatively short hydrograph boundary layer downstream of 
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the feed point.  Downstream of this hydrograph boundary layer a tradeoff takes place.  
The mobile-bed equilibrium consists of a bed which no longer cycles even though flow 
discharge continues to cycle.  That is, bed elevation and surface grain size distribution 
remain constant in time over the hydrograph.  Instead, the cycling is transferred to the 
bedload transport rate and bedload grain size distribution.  The bedload transport rate 
cyclically increases, and the bedload becomes coarser at the high flows of the 
hydrograph, and the pattern is reversed at the low flows of the hydrograph. 
 
This pattern is illustrated schematically in Figure 10.  In that figure, bed elevation is 
shown to vary cyclically only in a short hydrograph boundary layer near the feed point.  
Within this boundary layer bed elevation η and surface geometric mean size Dsg fluctuate 
over the hydrograph in response to changing water discharge qw but constant sediment 
feed rate qbTf and constant feed grain size distribution (e.g. constant feed geometric mean 
size Dlgf, where l = load, g = geometric mean, f = feed).  Downstream of this boundary 
layer, over a region that consists of the great majority of the total modelled reach, bed 
elevation η and surface geometric mean size Dsg remain constant over the hydrograph, 
but the bedload transport rate qbT and size distribution (e.g. load geometric mean size Dlg) 
fluctuate cyclically over the hydrograph. 
 
Numerical results for two numerical runs, Run 3H (qbTf = 1x10-2 m2/s) and Run 6H (qbTf 
= 3.5x10-4 m2/s) are sufficiently characteristic to warrant their use in justifying the above 
conclusions.  Run 3H is considered first.  Figure 11 shows a plot of the streamwise 
variation of bed slope at the maximum (peak) flow and the minimum (end) flow of the 
last hydrograph of the experiment, well after mobile-bed equilibrium had been reached.  
Bed slope S is identical at the peak and end flows of the hydrograph at all points except 
those within about 4000 m of the feed point.  In this hydrograph boundary layer reach, 
bed slope is low at the peak flow and high at the low flow, as the bed responds to a 
fluctuating flow discharge but a constant feed rate.  No such adjustment is observed 
downstream of this short boundary layer reach. 
 
Not only does bed slope S become invariant downstream of the hydrograph boundary 
layer reach, but also surface geometric mean size Dsg no longer varies with the 
hydrograph.  This is illustrated in Figure 12, which shows the grain size distributions of 
the surface layer at both the maximum (peak) and minimum (end) flow of the last 
hydrograph of the experiment.  The two surface size distributions overlap each other so 
closely that they are virtually identical.  The results for Figure 12 pertain to the node at 
the end of the model reach (k = 21), where x = L.  The same invariance in the surface 
grain size distribution is also found farther upstream, as long as the point in question is 
downstream of the hydrograph boundary layer of Figure 11. 
 
Figure 12 illustrates the tradeoff between fluctuations in surface size distribution and load 
size distribution downstream of the hydrograph boundary layer reach.  In addition to 
surface size distributions, the plot shows the size distribution of the load at the maximum 
(peak) flow and minimum (end) flow of the last hydrograph of the experiment, the load 
distribution averaged over the last hydrograph and finally the size distribution of the feed 
sediment.  The node in question is again the farthest node downstream.  The grain size 
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distribution of the load averaged over the hydrograph is very close to that of the feed, as 
is to be expected at mobile-bed equilibrium.  The load size distribution at the maximum 
(peak) flow is somewhat coarser than the feed sediment, and the load size distribution at 
the minimum (end) flow is markedly finer.  That is, the grain size distribution of the load 
now fluctuates markedly with the hydrograph, even as the grain size distribution of the 
surface layer remains invariant.  Again, the same result is obtained farther upstream at 
any point downstream of the hydrograph boundary layer reach. 
 
Figure 13a shows the variation in water discharge per unit width qw, volume sediment 
transport rate per unit width qbT and bed slope S over the last hydrograph of the run.  
Again, the plot pertains to the node farthest downstream, and again essentially the same 
results are obtained at all points downstream of the hydrograph boundary layer.  Note that 
bed slope S remains nearly perfectly constant over the hydrograph.  The sediment 
transport rate qbT, however, fluctuates strongly in concordance with the hydrograph; high 
flows cause high bedload rates, and low flow causes low bedload transport rates. 
 
Figure 13b has the same format as Figure 13a, but the point in question is the first node 
upstream (k = 1; x = 0), just downstream of the ghost node where sediment is fed in.  
This node is well within the hydrograph boundary layer reach, as is seen from Figure 11; 
bed slope S fluctuates cyclically as the channel tries to adjust to a constant sediment 
supply but cyclic water discharge variation.  Also plotted in Figure 13b is the variation of 
load qbT over the hydrograph.  Note that qbT is already varying cyclically over the 
hydrograph at the first node upstream, even though the pattern is rather strongly skewed 
as compared to that in Figure 13a. 
 
Figure 14a shows the variation of qw, load geometric mean size Dlg and surface geometric 
mean size Dsg at the farthest node downstream (M = 21) over the last hydrograph of the 
numerical run.  The corresponding plot for the farthest node upstream (M = 1) is given in 
Figure 14b.  Comparing the two figures, it is seen that surface geometric mean Dsg grain 
size varies cyclically at the upstream node, but shows little variation at the downstream 
node.  The load geometric mean grain size varies cyclically at both nodes, but the 
variation is stronger at the downstream node. 
 
The essential points are worth summarizing again.  A hydrograph is cycled repeatedly.  
Sediment is fed in at the upstream end at a constant rate and with a constant grain size 
distribution.  Within a short hydrograph boundary layer near the feed, the mobile-bed 
equilibrium associated with these constraints consists of a bed elevation, bed slope and 
surface size distribution that fluctuate cyclically with the hydrograph.  Farther 
downstream, however, bed elevation, bed slope and surface size distribution evolve to 
become independent of the hydrograph, and instead the cyclic variation is transferred to 
the magnitude and grain size distribution of the bedload transport. 
 
The above summary also implies the conditions under which the hydrograph boundary 
layer disappears.  Suppose that the run were to be continued at mobile-bed equilibrium, 
but the bedload feed rate and size distribution were now allowed to fluctuate cyclically 
and sympathetically with the hydrograph, in precisely the way that is observed 
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downstream of the hydrograph boundary layer.  Under such conditions the hydrograph 
boundary layer would disappear, and the bed elevation and surface size distribution 
would everywhere become constant over the hydrograph, even inside what used to be the 
hydrograph boundary layer.  The above statement is easily confirmed with the numerical 
model. 
 
All 11 numerical runs indicate that, other factors being equal, the length of the 
hydrograph boundary layer increases with increasing sediment feed rate qbTf.  With this in 
mind, results are also shown for Run 6H (qbTf = 3.5x10-4 m2/s).  Figure 15 for Run 6H 
shows the slope profiles at the maximum (peak) and minimum (end) flows of the last 
hydrograph of the run.  Again, the node is the one farthest downstream.  The hydrograph 
boundary layer is again clearly apparent, although the phasing of aggradation is different 
from that seen in Figure 11 for Run 3H.  Figure 16 for Run 6H, which corresponds to 
Figure 12 for Run 3H, again shows that the invariance of the surface grain size 
distributions over the hydrograph at the last node, even while the grain size distribution 
of the load varies strongly between the maximum (peak) and minimum (end) flows of the 
last hydrograph. 
 
Figures 17a and 17b for Run 6H, which correspond to Figure 13a for Run 3H, show that 
at the node farthest downstream the bedload transport rate varies strongly over the 
hydrograph at mobile-bed equilibrium, whereas bed slope remains constant.  Figures 17c 
and 17d for Run 6H, which correspond to Figure 13b for Run 3H, show that both the 
bedload transport rate and the bed slope vary over the hydrograph at the node farthest 
upstream.  A comparison of Figures 13b and 17d show that a phase shift in bed slope 
variation at x = 0 of about half a day in Run 6H as compared to Run 3H, such that bed 
slope attains its maximum and minimum values at later times in Run 6H than in Run 3H. 
 
Figures 18a and 18b for Run 6H, which corresponding to Figures 14a and 14b for Run 
3H, illustrate a surface geometric mean size that remains nearly perfectly constant over 
the hydrograph at the downstream node, but which shows marked cyclic variation at the 
upstream node. 
 
Summarizing, Run 6H shows all the features of Run 3H, but more strongly so.  For 
example, it is of value to compare Figure 18a of Run 6H with Figure 14a of Run 3H.  In 
both cases it is seen that the surface geometric mean size Dsg at the node farthest 
downstream shows little cyclic variation at mobile-bed equilibrium.  Some variation is, 
however detectable in the case of Figure 14a for Run 3H, where the variation is 
undetectable in the case of Figure 18a for Run 6H.  This reflects the tendency for the 
effect of the upstream boundary conditions to become ever more strongly concentrated in 
an ever-thinner hydrograph boundary layer reach as qbTf declines. 
 
11.  COMPARISON OF RESULTS FOR CONSTANT FLOW VERSUS CYCLED 
HYDROGRAPH 
 
In the figures discussed below the morphodynamic behavior of the river outside the 
hydrograph boundary layer at mobile-bed equlibrium is characterized by the behavior at 
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the node farthest downstream.  This is because at mobile-bed equilibrium the behavior 
outside the hydrograph boundary layer is, to a high degree of approximation, everywhere 
the same as that at the node farthest downstream. 
 
Figure 19 shows plots of the following parameters at mobile-bed equilibrium against 
sediment feed rate qbTf for the 11 runs with a cycled hydrograph: surface geometric mean 
size averaged over the hydrograph Dsga, bedload geometric mean size averaged over the 
hydrograph Dlga, geometric mean size of the feed sediment Dlsg and bed slope S.  All 
parameters except Dlsg pertain to the node farthest downstream.  The overall pattern is 
identical to that seen in in Figure 7 for the runs with constant flow; bed slope S increases, 
and surface geometric mean size Dsg decreases, with increasing sediment feed rate qbTf.  
Again, the progression from nearly static armor, to mobile armor, and finally to a 
condition for which the bed is nearly unarmored is readily evident. 
 
Figure 20 shows the surface sand contents at the maximum flow (peak flow) fraction of 
sand content Fssp and minimum flow (end flow) fraction of sand content Fsse in the 
surface layer (expressed in percentages) as functions of qbTf.  Again, the data are for the 
node farthest downstream and the last hydrograph of the run.  Note that Fsse and Fssp are 
essentially identical except at the highest two sediment feed rates.  At these high feed 
rates the hydrograph boundary layer becomes somewhat diffuse, so that some effects of 
the upstream boundary conditions propagate weakly to the downstream end of the flume.  
The general pattern of Figure 20, according to which the fraction of sand in the surface 
layer increases with increasing sediment transport rate, closely parallels that seen in 
Figure 8 for the runs with constant flow. 
 
Figure 21 shows comparisons of the equilibrium values of the following parameters for 
both the constant-flow runs and the hydrograph runs: a) surface geometric mean size Dsg 
for constant flows and Dsgp at the maximum (peak) flows for the hydrograph, b) fraction 
of sand in the surface layer Fss for constant flows and Fssp at the maximum (peak) flows 
for the hydrograph, and c) bed slope S for both cases.  Also shown for reference is the 
geometric mean size Dlgf of the feed sediment.  It should be noted that the data for the 
constant-flow runs pertain to the node farthest upstream, whereas the data for the 
hydrograph runs pertain to the node farthest downstream.  Having said this, in the case of 
mobile-bed equilibrium at constant discharge all parameters at the downstream node 
should take the same values as at the upstream node. 
 
Figure 21 highlights the effect of the cycled hydrograph as opposed to constant flow 
corresponding to the average of the hydrograph continued for the same number of days 
per year.  In all cases a cycled hydrograph leads to a bed with a lower slope and a finer 
surface layer than in the case of the corresponding constant flow.  The difference between 
the two becomes progressively weaker as feed rate qbTf increases.  The overall trends are, 
however, the same in both cases. 
 
Figure 22 for the case of cycled hydrographs corresponds to Figure 9 for constant flows.  
It shows the downstream surface grain size distributions at mobile-bed equilibrium for all 
the numerical runs of Table 1.  Also shown is the grain size distribution of the feed.  As 



 15

in the case of Figure 9, the plot illustrates the progression from nearly static armor, to 
mobile armor and then to a state at which the bed is nearly unarmored as sediment feed 
rate qbTf increases. 
 
Figures 23 and 24 pertain solely to the hydrograph runs.  Figure 23 shows plots of surface 
geometric mean sizes at the maximum (peak) and minimum (end) flows Dsgp and Dsge, 
respectively, as well as geometric mean sizes of the load at the maximum (peak) and 
minimum (end) flows Dlgp and Dlge, respectively, versus sediment feed rate qbTf.  Again, 
the values are for the node farthest downstream and the last hydrograph of the run.  Also 
included is the geometric mean size Dlgf of the feed sediment.  Note that Dsgp and Dsge are 
virtually identical except at the highest feed rates, where (as is shown below) the 
hydrograph boundary layer becomes more diffuse.  Even at the highest feed rates, 
however, they differ little.  Note also, however, that Dlgp is always coarser than Dlge.  The 
difference is modest for the highest feed rate qbTf = 1x10-1 m2/s, and reaches a maximum 
at a feed rate near qbTf = 2x10-4 m2/s.  The difference then declines with decreasing qbTf.  
The decline in the difference between the bedload geometric mean sizes at the peak and 
end flows as qbTf declines below 2x10-4 m2/s appears to be inherent in the formulation of 
Wilcock and Crowe (2003). 
 
In the case of the lowest feed rate in Figure 23, the surface geometric mean size Dsgp is 
seen to be slightly finer than that of the feed sediment.  This likely reflects the fact that at 
a feed rate qbTf as low as 1x10-6 m2/s even 120,000 years of run time is not quite 
sufficient to reach a (barely) mobile-bed equilibrium. 
 
Figure 24 shows the fraction of sand in the surface and load at the maximum (peak) flow 
Fssp and Fslp, respectively, the corresponding fractions Fsse and Fsle at the minimum (end) 
flow, respectively, and the fraction of sand Fslf in the feed, all as functions of qbTf.  Again, 
the values correspond to the node farthest downstream and the last hydrograph of the run.  
Note that the sand fractions Fssp and Fsse in the surface layer are nearly identical to each 
other, whereas the sand fraction in the load at peak flow Fslp tends to be markedly lower 
than the value Fsle at the end flow. 
 
12.  A SIMPLER MODEL FOR THE HYDROGRAPH BOUNDARY LAYER 
 
The numerical model described above serves to identify the hydrograph boundary layer 
and the tradeoff associated with it, but it does not provide a particularly lucid explanation 
for the existence of the hydrograph boundary layer.  In this section this explanation is 
pursued in the context of a simpler model using uniform sediment.  The model is 
developed with the aid of singular perturbation techniques applied to boundary layer 
analysis (Nayfeh, 1993). 
 
Consider the configuration of Figure 25, which differs from that of Figure 4 only in that 
the sediment fed in at the upstream is uniform with size D.  The volume bedload transport 
rate for uniform sediment is denoted as qb, and the corresponding feed rate is denoted as 
qbf.  Again, a cyclic hydrograph qw(t) is imposed, whereas the bedload feed rate qbf is held 
constant.  Figure 26 for uniform sediment is an analog of Figure 10 for mixtures.  It 
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suggests that under the imposed conditions, bed elevation η should fluctuate with 
discharge in a short hydrograph boundary layer downstream of the feed point.  Farther 
downstream, however, the analogous tradeoff should result in bed elevation η that is 
constant in time and a bedload transport rate that fluctuates over the hydrograph.  Here a 
rescaling is used to establish the existence of this hydrograph boundary layer and 
quantify its characteristics. 
 
Before pursuing the details of the analysis, it is useful to describe the results in advance 
without the use of equations.  Any river reach with a given length and given characteristic 
bed material sediment supply has a characteristic time for morphodynamic evolution in 
response to imposed change.  Now impose a cycled flow hydrograph but constant 
sediment feed rate onto this reach.  If the time duration of the hydrograph is sufficiently 
long compared to the response time of the reach, the flow hydrograph imposes cyclic 
aggradation and degradation throughout the reach, even at mobile-bed equilibrium.  If the 
time duration of the hydrograph is very short compared to the response time of the reach, 
however, the flow discharge changes so fast that the effect of any given flow discharge 
does not have enough time to propagate very far downstream before the discharge 
changes.  As a result bed elevation fluctuations are restricted to a short hydrograph 
boundary layer near the feed point.  Downstream of this hydrograph boundary layer bed 
elevation becomes invariant in time over the hydrograph, and instead the effect of the 
hydrograph is imprinted on the load, which varies cyclically in time. 
 
In accordance with Figure 25, sediment is fed into a reach of length L at constant volume 
rate per unit width qbf.  Flow discharge per unit width qw varies, however, according to a 
cyclically repeated hydrograph: 
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where qwo denotes a characteristic discharge of a base state (without fluctuations) and Th 
denotes the duration of the hydrograph.  Eventually a final equilibrium state is obtained.  
What are its characteristics? 
 
The Exner equation of sediment continuity for uniform sediment is written as 
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A very simple sediment transport equation is used here for illustrative purposes; 
 Sqq wbα=          (25) 
where αb is a constant.  Such an equation can be obtained from a relation of the type of 
Meyer-Peter and Müller (1948) at sufficiently high Shields number, the assumption of a 
constant coefficient of bed resistance Cf, where 
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and the normal flow assumption of (14), in which case 
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It should be pointed out, however, that the general nature of the results obtained here are 
not dependent on the precise nature of the bedload transport equation. 
 
The boundary conditions on (24) are 
 0,qq

Lxbf0xb =η=
==

       (28a,b) 
In the analysis of this section the hydrograph described by (23) is repeated cyclically with 
no intermittency, i.e. no periods of low flow.  That is, time is compressed to exclude 
periods of morphodynamically inactive low flow. 
 
The base equilibrium state associated with constant discharge qwo and sediment feed rate 
qbf is given as 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=η

α
=

L
x1LS,

q
q1S oo

w

bf

b
o       (29a,b) 

Now the solution of (24) subject to (28) is written as 
 )x()x( do η+η=η         (30) 
where ηd denotes a deviatoric bed elevation around the base equilibrium state.  
Substituting (30) into (18) and using the result and (29a) to reduce (25), it is found that 
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Equation (24) reduces with (29a) to 
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The boundary conditions (28a,b) on (33) reduce to 
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The problem is made dimensionless as follows: 
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Note that according to the above transformations, dimensionless distance xn varies from 0 
to 1 and dimensionless slope and bedload transport rate fluctuate around unity.  This 
rescaling allows the determination of a dimensionless parameter that must be small in 
order for a hydrograph boundary layer to be manifested. 
 
The parameters xn and ηn are hereby termed “outer variables,” in the sense that they are 
the relevant parameters for describing channel morphodynamics outside the hydrograph 
boundary layer.  That is, downstream distance x is normalized against total reach length L 
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and deviatoric bed elevation ηd is normalized against the elevation difference between the 
upstream and downstream end of the reach in the absence of elevations.  Note also that t 
is normalized against a characteristic time for morphodynamic response Tm of the entire 
channel reach (with length L) by aggradation or degradation, where 
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so that (35c) can be recast in the form 
 nmtTt =          (35g) 
 
That (35f) does indeed correspond to a characteristic morphologic response time can be 
seen as follows.  Consider a reach of zero slope and length L.  If sediment were fed into 
this reach at rate qbf to form wedge-shaped deposit with slope So, vanishing elevation at 
the downstream end and deposit porosity λp, and no sediment outflow were allowed, the 
amount of time required to fill with wedge would be equal to Tm/2. 
 
Substituting (35a–e) into (33), (34a,b), (31) and (32), the following dimensionless 
relations are obtained; 
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Recalling that fw is a function of t/Th, where Th denotes the length (period) of the 
hydrograph, it follows from (35c) that 
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The rest of the analysis is based on the assumption that 
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This assumption implies that the duration of a single hydrograph is very short compared 
to the characteristic time needed to effect morphodynamic change over the entire 
channel.  It will be shown that a well-defined hydrograph boundary layer appears under 
the constraint of (40), or more precisely when 2/1ε  << 1. 
 
The equations are further transformed from the time variable tn to a time variable t̂  
defined so that t̂  varies by a factor of unity over a single hydrograph: 
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Substituting (41) into (36a) and reducing, 
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Now in general (42) combined with (40) implies that bed elevation is changing only 
slowly in time.  However, when the final (cyclic) equilibrium is reached, (42) combined 
with (36c) gives in the limit as ε → 0 the result 
 0n =η           (43) 
That is, the deviatoric bed elevation (and thus deviatoric bed slope) can be set equal to 
zero at the final cyclic equilibrium, and the dimensioned bed profile is given by (29b) of 
the base state.  At this same cyclic equilibrium the (dimensioned) sediment transport rate 
is given from (31a) and (37b) in the limit as ε → 0 as 
 )f1(qq wbfb +=         (44) 
That is, deviatoric bed elevation and slope vanish, whereas the sediment transport rate 
follows the hydrograph. 
 
The above solution is precisely that hypothesized in Figure 26 to prevail everywhere 
except in a hydrograph boundary layer near the sediment feed point; bed elevation and 
bed slope do not vary over the hydrograph, and the bedload transport rate tracks the 
hydrograph in accordance with (44). 
 
Now the above solution is incapable of satisfying (36b) at xn = 0.  This does not mean 
that the solution is wrong, but rather that it breaks down in the vicinity of xn = 0.  More 
specifically, the satisfaction of (36b) requires the existence of a “thin” boundary layer 
near xn = 0 where the solution differs form the one given above.  To this end, the 
transformations 
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are introduced into (36a) and (36b), resulting in the relations 
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The variables with the tildes in (45a,b) are referred as “inner variables,” as they scale the 
problem within the hydrograph boundary layer. 
 
One more boundary condition on the above set is obtained by limit matching to the outer 
solution; 
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In practical terms this is replaced with 
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where L~  might be equal to 5 or 10.  (The precise value is irrelevant as long as it is 
sufficiently large compared to unity; see Nayfeh, 1993).  Note that the dimensioned 
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distance L~x  from the feed point corresponding to any value L~  is given from (45b) and 

(35a) as ε1/2 L~ L, so that if ε1/2 is sufficiently small L~x  is only a small fraction of reach 
length L. 
 
Note that in the above formulation )t̂(fw  is periodic with period 1.  All that remains here 
is for (46a) to be solved subject to (46b,d) at cyclic equilibrium.  The problem is linear; 
here a numerical formulation is used.  In a numerical formulation, it is necessary to “spin 
up” to the mobile-bed equilibrium solution; an appropriate initial condition is 
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Dimensionless load takes the following form in inner variables; 
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Calculations were performed using a simple sinusoidal specification for fw: 
 )t̂2sin(a)t̂(f hw π=         (49) 
where ah is a dimensionless amplitude of discharge fluctuation.  That is, (49) specifies the 
fluctuating part of the cyclically repeated hydrograph.  Thus (46a) was solved 
numerically subject to the boundary conditions (46b) and (46d), the initial condition (47), 
the specification 
 10L~ =           (50) 
and the range 0.05 < ah < 0.6.  In performing the calculations the domain 0 ≤ x~  ≤ L~  was 
divided into 80 intervals and the hydrograph was discretized into 32 time steps.  The 
calculation was continued until a final (fluctuating) equilibrium state was obtained. 
 
Figure 27 shows a plot of dimensionless deviatoric bed elevation profiles in terms of the 
inner variable form η~  versus dimensionless distance from the feed point, again in terms 
of the inner variable form x~  for all 32 steps of the last hydrograph of the numerical run, 
by which time a mobile-bed equilibrium had been achieved.  Deviatoric bed elevation is 
seen to fluctuate strongly in the range 2x~ < , but for larger values of x~  the fluctuations 
disappear.  The zone where η~  varies strongly over the hydrograph corresponds to the 
hydrograph boundary layer. 
 
Figure 28 shows a plot of dimensionless bedload transport rate qn versus x~ , again for all 
32 steps of the final hydrograph.  Note that qn is precisely equal to 1 (bedload transport 
rate = feed rate) at 0x~ = , but downstream of 2x~ =  it is seen that qn strongly tracks the 
hydrograph, precisely as postulated in Figure 25. 
 
Dimensionless boundary layer thickness δx~  can be defined as follows.  Let δx~  denote the 
smallest value of x~  such that the following condition is satisfied; 
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where χtol is a dimensionless tolerance that must take a value sufficiently small compared 
to unity so as to allow the neglect of fluctuations in η~  for δ> x~x~ .  Here χtol is set equal to 
0.01.  Figure 29 shows a plot of δx~  versus ah for the calculations performed here.  It is 
seen that δx~  does not vary strongly in ah over the range, 0.05 ≤ ah ≤ 0.6, ranging from 
about 2.5 at the lower value of ah to about 2.2 at the higher value.  It should be noted that 
a tolerance χtol of 0.01 quite small, resulting in an estimate of boundary layer thickness 
that is toward the high side. 
 
It is now possible to characterize the hydrograph boundary layer thickness in 
dimensioned terms.  Let x = δ denote the distance from the feed point (x = 0) to a point 
downstream of which elevation fluctuations can be neglected, i.e. the point where the 
equality in (51) is satisfied.  This value of δ denotes the thickness, or length of the 
hydrograph boundary layer.  Between (35a) and (45b) it is found that 

 δε=
δ x~
L

2/1          (52) 

Since δx~  is in the range 2.1 ~ 2.5 for the calculations performed here, it follows that the 
hydrograph boundary layer length is short compared to the reach length L as long as 
 12/1 <<ε          (53) 
 
Reducing (52) with (39), it is further found that 
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The above relation justifies the verbal description given at the beginning of this section.  
That is, as long as hydrograph duration Th is sufficiently short compared to the 
characteristic time of morphologic response Tm, bed elevation fluctuations are restricted 
to a short hydrograph boundary layer downstream of the feed point.  Downstream of this 
bed elevation becomes invariant, and instead the bedload transport rate fluctuates 
cyclically with the hydrograph. 
 
The above equation indicates that the ratio of the hydrograph boundary layer length to the 
reach length increases with increasing bedload transport rate qbo (= feed rate).  This is 
why at least some weak influence of the upstream conditions are felt at the downstream 
end of the runs with the highest bedload feed rates in Table 1. 
 
Now (54) does not apply precisely to the runs of Table 1, because its derivation uses a 
highly simplified bedload transport relation that does not treat mixtures.  This 
notwithstanding, the result of a more detailed analysis is likely to have a form similar to 
(54).  With this in mind, (54) is applied as a crude approximation to estimate the ratio δ/L 
as a function of volume bedload feed rate per unit width qbTf for the numerical runs of 
Table 1.  In performing the calculation, Th is set equal to 4.5 days and λp is set equal to 
0.4, as was done in the case of the numerical runs of Table 1.  In addition, δx~  is loosely 
estimated as 2.5, and the value used for So in (54) is the final equilibrium bed slope 
(downstream of the hydrograph boundary layer) for each run, as listed in Table 1 
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Figure 30 shows the estimate of δ/L versus qbTf obtained in this way for the experiments 
of Table 1.  The plot suggests that the hydrograph boundary layer should be very thin 
indeed near the lowest feed rates, but should no longer be short compared to the reach 
length (and indeed, occupy on the order of 40 percent of the reach length) at the highest 
feed rate.  This is in accord with the results presented in regard to the numerical runs of 
Table 1, according to which the hydrograph boundary layer can be expected to become 
thicker and more diffuse as bedload feed rate increases. 
 
The above analysis can be generalized in a straightforward way for a) more realistic 
bedload transport equations for uniform sediment and b) bedload transport equations for 
mixtures.  Such an analysis would reveal two characteristic morphodynamics time scales 
for the case of mixtures, i.e. the one expressed in (35f) which characterizes the response 
time for bed aggradation or degradation, and a shorter time scale characterizing the 
response time for the bed surface layer to adjust to the flow regime.  The time scale of the 
hydrograph must in principle be short compared to the smallest of these time scales in 
order for a distinct hydrograph boundary layer to be manifested.  The two time scales 
reduce to a single scale for the case of uniform sediment considered in this section.  The 
simplicity of this case allows a relatively clear explanation of the phemonenon of the 
hydrograph boundary layer. 
 
A more complete version of the above analysis, along with a comparison with 
experimental data can be found in Wong and Parker (in press). 
 
13.  CAVEATS 
 
A careful perusal of Figure 19 reveals that the geometric mean size of the bedload Dlg 
averaged over the hydrograph at mobile-bed equilibrium is quite close to the geometric 
mean size of the bedload feed Dlgf, but not identical to it.  The two should in fact be 
identical.  The discrepancy is partly associated with numerical issues, particularly in the 
case of Run 11H, for which the feed rate qbTf is so low that even 120,000 year of run time 
is not quite sufficient to reach mobile-bed equilibrium. 
 
There is, however, another reason for the modest discrepancy.  Equation (9) was not 
precisely implemented in the calculations reported here.  In a precise implementation, 
new substrate with a vertically varying grain size distribution would be stored as the bed 
aggrades, and this substrate would be mined as the bed degrades subsequently.  Such an 
implementation, while not difficult in principle, imposes large constraints on 
computational memory, as the vertical structure of the substrate must be stored 
dynamically.  Here the calculations were simplified by assuming that the substrate size 
distribution is always equal to the initial value.  This simplification introduces a modest 
but discernible error in the calculations in the approach to mobile-bed equilibrium. 
 
In several places in the description the bed is characterized as being “unarmored” or 
“nearly unarmored” for sufficiently high gravel supply.  A more precise description is 
that the surface size distribution approaches that of the load at sufficiently high transport 
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rates.  This translates into the elimination of the armor layer only when the substrate has a 
similar size distribution, or is coarser than the load.  This condition appears, however to 
prevail in most cases of interest (e.g. Lisle, 1995). 
 
The conclusions presented here, and more precisely the conclusion that the surface layer 
of a gravel-bed river tends to evolve so that its grain size distribution becomes 
independent of flow, is based on a 1D numerical model in which all form drag and all 2D 
effects such as bars and local sorting have been neglected.  In addition, the hydrograph is 
deterministic and cyclically repeated rather than stochastic.  Including such factors might 
change the results, which thus must remain somewhat tentative. 
 
The present results apply to mobile-bed equilibrium.  They may apply to field gravel-bed 
streams that are a) subject to hydrologic regime that does not deviate too much from 
statistical invariance and b) are otherwise not too far from grade.  They are unlikely to 
apply to streams that are measurably out of equilibrium. 
 
14.  CONCLUSIONS 
 
A 1D numerical model is presented for the morphodynamic evolution to mobile-bed 
equilibrium of a reach of a gravel-bed river transporting gravel and sand as bedload.  A 
cycled hydrograph is imposed on the reach, but the upstream sediment feed rate and size 
distribution are held constant.  The following results are obtained at mobile-bed 
equilibrium over a broad range of conditions. 

• Just downstream of the feed point the bed elevation, bed slope and bed surface 
size distribution fluctuate cyclically over the hydrograph, as the bed responds to 
the imbalance between transport capacity and supply. 

• This behavior is, however, restricted to a short reach, or hydrograph boundary 
layer downstream of the feed point. 

• Downstream of the hydrograph boundary layer, a tradeoff in fluctuations between 
bed and bedload takes place.  That is, the bed evolves to a bed elevation, bed 
slope and bed surface size distribution that become invariant to the hydrograph.  
The response to the hydrograph is instead expressed in terms of a bedload 
transport rate and a bedload size distribution that fluctuate cyclically with the 
hydrograph.  This behavior prevails over the great majority of the reach in 
question. 

• The hydrograph boundary layer is shortest and sharpest when the duration of the 
hydrograph is very short compared to the characteristic morphodynamic response 
time of the reach.  This is because the flow changes so rapidly in time that the 
effect of constant bedload magnitude and size distribution imposed upstream is 
not able to propagate far downstream. 

• As the duration of the hydrograph becomes longer compared to the characteristic 
morphodynamic response time of the reach, the hydrograph boundary layer 
becomes thick compared to the reach length, and more diffuse as well.  Such 
conditions are approached as the bedload feed rate becomes sufficiently high. 

• A hydrograph boundary layer could be identified in all cases over the range of 
bedload feed rates studied here. Some weak effect of the upstream boundary 
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condition was exerted on the bed surface size distribution at the downstream end, 
however, in the cases of the highest bedload feed rates. 

 
The main conclusion of this paper may have an important practical application.  Let us 
assume, at least tentatively, that real gravel-bed rivers, with all their complications which 
are not included in the present numerical model, nevertheless behave similarly to that 
described above.  It then follows that the surface size distribution present during floods 
(which is not easily sampled) may differ little from that prevailing at low flow (which is 
easily sampled).  If this were to be true, it would greatly simplify the application of 
surface-based gravel transport relations to rivers at flood flows. 
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NOTATION 
 
ah  Dimensionless amplitude of flow discharge fluctuation for the sinusoidal  
   hydrograph of the analysis for uniform sediment 
au  upwinding coefficient used in calculating spatial derivatives of parameters  
   involving bedload transport 
B  channel width 
Cf  bed friction coefficient defined by (26) 
D  sediment size 
Di  characteristic sediment size of the ith grain size range 
Dlg  geometric mean size of bedload 
Dlge  geometric mean size of bedload at end flow of hydrograph 
Dlgf  geometric mean size of feed sediment 
Dlgp  geometric mean size of bedload at peak flow of hydrograph 
Dl50f  median size of the feed sediment 
Dsg  geometric mean size of sediment in surface layer 
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Dsga  geometric mean size of sediment in surface layer averaged over  
   hydrograph 
Dsge  geometric mean size of sediment in surface layer at end flow of  
   hydrograph 
Dsgp  geometric mean size of sediment in surface layer at peak flow of  
   hydrograph 
Ds90  surface size such that 90 percent of a sample is finer 
Fsl  fraction of sand in bedload 
Fsle  fraction of sand in bedload at end flow of hydrograph 
Fslf  fraction of sand in feed sediment 
Fslp  fraction of sand in bedload at peak flow of hydrograph 
Fss  fraction of sand in surface layer 
Fsse  fraction of sand in surface layer at end flow of hydrograph 
Fssp  fraction of sand in surface layer at peak flow of hydrograph 
fh  functional notation for the fluctuating part of the hydrograph used in the  
   analysis for uniform sediment; see (23) 
fi  volume fraction of substrate material in the ith grain size range 
fIi  volume fraction of material in the ith grain size range exchanged across  
   the surface-substrate interface as the bed aggrades or degrades 
Fi  volume fraction of surface material in the ith grain size range 
g  gravitational acceleration 
H  flow depth 
k  index for nodes in spatial discretization 
ks  bed roughness height for resistance calculations 
L  reach length 
L~   appropriately large value of x~  chosen to be well outside the hydrograph  
   boundary layer (but still only a short distance downstream of the  
   feed point compared to reach length L) 
La  thickness of the active (surface) layer 
M  number of spatial intervals in discretization 
na  coefficient relating the thickness of the active (surface) layer La to surface  
   size Ds90 
nk  coefficient relating the roughness height ks of the flow to surface size Ds90 
nstep  number of time steps (each with length ∆tf) that a single step of the  
   hydrograph is divided into 
pbi  fraction of bedload material in the ith grain size range 
qb  volume transport rate of bedload per unit width for uniform sediment 
qbf  feed value of qb 
qbfi  volume feed rate of bedload per unit width in the ith grain size range 
qbi  volume transport rate of bedload per unit width in the ith grain size range 
qbT  volume transport rate of bedload per unit width summed over all grain  
   sizes 
qbTf  volume feed rate of bedload per unit width summed over all grain sizes 
qn  dimensionless bedload transport rate defined by (35e) 
Qw  water discharge 
qw  water discharge per unit width 
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qwo  water discharge per unit width in the absence of discharge fluctuation  
   (base equilibrium state) in the analysis for uniform sediment 
R  = (ρs/ρ) – 1; submerged specific gravity of sediment 
S  bed slope 
SI  initial bed slope 
Sn  normalized bed slope defined by (35d) 
So  bed slope at the base equilibrium state in the analysis for uniform  
   sediment; see (29a) 
Tdur  duration of a numerical calculation 
Th  hydrograph duration in the analysis for uniform sediment 
Tm  characteristic time for morphologic response in the analysis for uniform  
   sediment; see (40) 
t  time 
tn  dimensionless time defined by (35c) 
t̂   dimensionless time defined by (41) 
U  depth-averaged flow velocity 

∗u   shear velocity 
∗
iW   dimensionless sediment transport rate defined by (16) 

x  distance downstream 
xn  dimensionless “outer” streamwise distance defined by (35a) 
x~   dimensionless “inner” streamwise distance defined by (45b) 
δx~   thickness of the hydrograph boundary layer in terms of the inner  

   streamwise coordinate 
α  coefficient in relation (9) for interfacial exchange fractions as bed  
   aggrades or degrades 
αb  coefficient in the simple bedload relation (25) used in the analysis for  
   uniform sediment 
αr  coefficient in Manning-Strickler resistance relation (11) 

tolχ   tolerance factor used to determine the thickness of the hydrograph  
   boundary layer in (51) 
δ  thickness, or length downstream of x = 0, of the hydrograph boundary  
   layer 
∆t  temporal step length used in calculations for constant flow; corresponds to  
   actual time over a year rather than just flood time 
∆tf  temporal step length during flood flow for calculations using hydrographs 
∆x  spatial step length 
ε   ratio of hydrograph duration Th to characteristic time for morphodynamic  
   response Tm; see (39) 
η  bed elevation 
ηd  deviatoric bed elevation defined by (30) 
ηn  dimensionless “outer” deviatoric bed elevation defined by (35b) 
η~   dimensionless “inner” deviatoric bed elevation defined by (45a) 
ηo  bed elevation for the base equilibrium state in the analysis for uniform  
  sediment; see (29b) 
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ηd  deviatoric bed elevation defined by (30) 
λp  porosity of bed deposit 
ρ  water density 
ρs  sediment density 
τb  boundary shear stress 
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TABLE 1.  INPUT PARAMETERS FOR THE RUNS WITH A REPEATED 

HYDROGRAPH 
Run qbTf, m2/s SI ∆tf, days nstep Tdur, years 
1H 1x10-1 0.0263263 0.00625 80 300 
2H 3.5x10-2 0.0124 0.0125 40 600 
3H 1x10-2 0.00571 0.025 20 1200 
4H 3.5x10-3 0.00335 0.025 20 3000 
5H 1x10-3 0.00208 0.1 5 3000 
6H 3.5x10-4 0.00157 0.25 2 6000 
7H 1.5x10-4 0.00133 0.5 1 12000 
8H 1x10-4 0.00125 0.5 1 12000 
9H 3.5x10-5 0.00112 0.5 1 24000 
10H 1x10-5 0.00102 0.5 1 36000 
11H 1x10-6 0.000976 0.5 1 120000 
 

TABLE 2.  INPUT PARAMETERS FOR THE RUNS WITH AN EQUIVALENT 
CONSTANT FLOW 

Run qbTf, m2/s SI ∆t, days Tdur, years 
1C 1x10-1 0.0263 0.457 30 
2C 3.5x10-2 0.0124 1.826 120 
3C 1x10-2 0.00571 7.305 480 
4C 3.5x10-3 0.00335 14.61 960 
5C 1x10-3 0.00208 58.44 3840 
6C 3.5x10-4 0.00157 116.88 15360 
7C 1.5x10-4 0.00133 116.88 30720 
8C 1x10-4 0.00125 116.88 30720 
9C 3.5x10-5 0.00190 58.44 30720 
10C 1x10-5 0.00170 58.44 30720 
11C 1x10-6 0.00150 58.44 61440 
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Figure 1.  View of the armored bed of the River Wharfe, U.K.  Image courtesy D. M. 
Powell. 
 

 
Figure 2a.  View of the Elbow River, Canada at low flow.  Image courtesy A. B. 
Hollingshead. 
 

 
Figure 2b.  View of the same reach of the Elbow River, Canada at a flood estimated to be 
a 100-year recurrence flood.  Image courtesy A. B. Hollingshead 
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Figure 3.  View of the unarmored bed of the Nahal Yatir, Israel.  Image courtesy D. M. 
Powell. 
 

 
Figure 4.  Schematic diagram of the configuration for the numerical experiments with 
sediment mixtures. 
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Figure 5.  Plot of the 4.5-day hydrograph used in the runs of Table 1, and the 4.5-day 
period of constant flow with the average water discharge per unit width of the hydrograph 
used in the runs of Table 2.  Each 4.5-day flow (hydrograph or constant flow) was 
repeated once per year. 
 

 
Figure 6.  Grain size distribution of the feed sediment.  The same grain size distribution 
was used for the initial surface and substrate size distributions. 
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Figure 7.  Plot of surface geometric mean size Dsg and bed slope S as functions of the 
volume bedload feed rate per unit width qbTf for the runs of Table 2, i.e. constant flow.  
The parameters pertain to mobile-bed equilibrium.  Also shown is the geometric mean 
size Dlgf of the feed sediment, which is held constant in all runs. 
 

 
Figure 8.  Plot of the fraction of sand Fss in the surface layer as a function of volume 
bedload feed rate per unit width qbTf for the runs of Table 2, i.e. constant flow.  The 
parameters pertain to mobile-bed equilibrium.  Also shown is the fraction of sand Fslf in 
the feed sediment, which is held in all runs. 
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Figure 9.  Surface grain size distributions at mobile-bed equilibrium for all the constant-
flow runs of Table 2.  The bedload feed rates qbTf are specified in m2/s.  Also shown is the 
grain size distribution of the feed sediment, which is held constant in all runs. 
 

 
Figure 10.  Diagram illustrating the essential results of the numerical runs with a cycled 
hydrograph of Table 1.  At the upstream end of the reach the total volume feed rate per 
unit width qbT and the geometric mean size of the load Dlg are held constant, but flow 
discharge per unit width qw is allowed to vary cyclically.  In a short hydrograph boundary 
layer downstream, bed elevation η and surface geometric mean grain Dsg vary cyclically 
as well.  Downstream of this boundary layer η and Dsg become invariant with time, and 
qbT and Dlg now vary cyclically in time with the flow hydrograph.  The diagram pertains 
to mobile-bed equilibrium. 
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Figure 11.  Bed slope profiles for the maximum (peak) flow and the minimum (end) flow 
of the last hydrograph of Run 3H.  Mobile-bed equilibrium has been achieved by this 
time.  Bed slope fluctuates with the hydrograph only in a short region (hydrograph 
boundary layer) near the feed point (x = 0). 
 

 
Figure 12.  Grain size distributions of the surface material and bedload at the maximum 
(peak) and minimum (end) flows of the last hydrograph of Run 3H.  Also included are 
the grain size distributions of the feed sediment and the bedload averaged over the 
hydrograph.  The node in question is the one farthest downstream (x = L).  Note that the 
surface size distribution is nearly invariant, whereas the bedload size distribution varies 
strongly between the peak and end flows. 
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Figure 13a.  Plot of the variation of water discharge per unit width qw, bed slope S and 
volume bedload transport rate per unit width qbT with time over the last hydrograph, at 
the node farthest downstream (x = L), for Run 3H.  Note that slope S is invariant over the 
hydrograph, but the time variation in the bedload transport rate qbT tracks that of the 
water discharge per unit width qw. 
 

 
Figure 13b.  Plot of the variation of water discharge per unit width qw, bed slope S and 
volume bedload transport rate per unit width qbT with time over the last hydrograph, at 
the node farthest upstream (x = 0), for Run 3H.  Note that slope S and the bedload 
transport rate qbT both vary in time over the hydrograph. 
 



 37

 

 
Figure 14a.  Plot of the variation of water discharge per unit width qw, load geometric 
mean size Dlg and surface geometric mean size Dsg with time over the last hydrograph, at 
the node farthest downstream (x = L), for Run 3H.  Note that load geometric mean size 
Dlg varies strongly in time over the hydrograph, whereas surface geometric mean size Dsg 
is nearly invariant. 
 

 
Figure 14b.  Plot of the variation of water discharge per unit width qw, load geometric 
mean size Dlg and surface geometric mean size Dsg with time over the last hydrograph, at 
the node farthest upstream (x = 0), for Run 3H.  Note that both surface geometric mean 
size Dsg and load geometric mean size Dlg vary notably over the hydrograph. 
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Figure 15.  Bed slope profiles for the maximum (peak) flow and the minimum (end) flow 
of the last hydrograph of Run 6H.  Mobile-bed equilibrium has been achieved by this 
time.  Bed slope fluctuates with the hydrograph only in a short region near the feed point 
(x = 0).  The hydrograph boundary layer is somewhat shorter than in the case of Figure 
13 (Run 3H).  The very small streamwise variation in bed slope near x = L is an artifact 
of the model. 
 

 
Figure 16.  Grain size distributions of the surface material and bedload at the maximum 
(peak) and minimum (end) flows of the last hydrograph of Run 6H.  Also included are 
the grain size distributions of the feed sediment and the bedload averaged over the 
hydrograph.  The node in question is the one farthest downstream (x = L).  Note that the 
surface size distribution is invariant, whereas the bedload size distribution varies strongly 
between the peak and end flow. 
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Figure 17a.  Plot of the variation of water discharge per unit width qw and volume 
bedload transport rate per unit width qbT with time over the last hydrograph, at the node 
farthest downstream (x = L), for Run 6H.  The time variation in the bedload transport rate 
qbT tracks that of the water discharge per unit width qw. 

 
Figure 17b.  Plot of the variation of water discharge per unit width qw and bed slope S 
with time over the last hydrograph, at the node farthest downstream (x = L), for Run 6H.  
Note that slope S is invariant over the hydrograph. 
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Figure 17c.  Plot of the variation of water discharge per unit width qw and volume 
bedload transport rate per unit width qbT with time over the last hydrograph, at the node 
farthest upstream (x = 0), for Run 6H.  The time variation in the bedload transport rate 
qbT tracks that of the water discharge per unit width qw. 
 

 
Figure 17d.  Plot of the variation of water discharge per unit width qw and bed slope S 
with time over the last hydrograph, at the node farthest upstream (x = 0), for Run 6H.  
Note that slope S varies over the hydrograph. 
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Figure 18a.  Plot of the variation of water discharge per unit width qw, load geometric 
mean size Dlg and surface geometric mean size Dsg with time over the last hydrograph, at 
the node farthest downstream (x = L), for Run 6H.  Note that load geometric mean size 
Dlg varies strongly in time over the hydrograph, whereas surface geometric mean size Dsg 
is invariant. 
 

 
Figure 18b.  Plot of the variation of water discharge per unit width qw, load geometric 
mean size Dlg and surface geometric mean size Dsg with time over the last hydrograph, at 
the node farthest upstream (x = 0), for Run 6H.  Note that both surface geometric mean 
size Dsg and load geometric mean size Dlg vary notably over the hydrograph. 
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Figure 19.  Plot of surface geometric mean size averaged over the hydrograph Dsga, 
bedload geometric mean size averaged over the hydrograph Dlga and bed slope S as 
functions of the volume bedload feed rate per unit width qbTf for the hydrograph runs of 
Table 1.  The parameters pertain to mobile-bed equilibrium at the node farthest 
downstream (x = L).  Also shown is the geometric mean size Dlgf of the feed sediment. 
 

 
Figure 20.  Plot of the fraction of sand in the surface Fssp at the maximum (peak) flow and 
fraction of sand in the surface Fsse at the minimum (end) flow as functions of volume 
bedload feed rate per unit width qbTf for the runs of Table 1, i.e. cycled hydrograph.  The 
parameters pertain to mobile-bed equilibrium at the node farthest downstream (x = L).  
Also shown is the fraction of sand Fslf in the feed sediment. 
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Figure 21.  Plots of the following parameters at mobile-bed equilibrium as functions of 
volume bedload feed rate per unit width qbTf: bed slope S for both the hydrograph runs of 
Table 1 and constant-flow runs of Table 2; fraction of sand in the surface layer Fss for the 
runs of Table 2; fraction of sand in the surface layer at the maximum (peak) flow Fssp for 
the runs of Table 1; surface geometric mean size Dsg for the runs of Table 2; surface 
geometric mean size averaged over the hydrograph Dsga for the runs of Table 1.  Also 
shown for reference is the geometric mean size of the feed sediment Dlgf. 
 

 
Figure 22.  Surface grain size distributions at mobile-bed equilibrium for all the 
hydrograph runs of Table 1.  The bedload feed rates qbTf are specified in m2/s.  Also 
shown is the grain size distribution of the feed sediment.  The data pertain to the node 
farthest downstream (x = L). 
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Figure 23.  Plots of surface and bedload geometric mean sizes Dsgp and Dlgp, respectively, 
at maximum (peak) flow, and surface and bedload geometric mean sizes Dsge and Dlge, 
respectively, at minimum (end) flow for the hydrograph runs of Table 1.  The values 
pertain to mobile-bed equilibrium at the farthest node downstream (x = L).  Also shown 
for reference is the geometric mean size of the feed sediment Dlgf. 
 

 
Figure 24.  Plots of fraction of sand in the surface and bedload Fssp and Fslp, respectively, 
at maximum (peak) flow, and fraction of sand in the surface and bedload Fsse and Fsle at 
minimum (end flow) for the hydrograph runs of Table 1.  The values pertain to mobile-
bed equilibrium at the farthest node downstream (x = L).  Also shown for reference is the 
fraction of sand Fslf in the feed sediment. 
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Figure 25.  Schematic diagram of the configuration for the numerical experiments with 
uniform sediment. 
 

 
Figure 26.  Diagram illustrating the expected behavior for numerical experiments with 
uniform sediment.  At the upstream end of the reach the volume bedload feed rate per 
unit width qb is held constant, but flow discharge per unit width qw is allowed to vary 
cyclically.  In a short hydrograph boundary layer downstream bed elevation η varies 
cyclically as well.  Downstream of this boundary layer η becomes invariant with time, 
and qb  now varies cyclically with the flow hydrograph.  The diagram pertains to mobile-
bed equilibrium. 
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Figure 27.  Sample calculation for uniform sediment at mobile-bed equilibrium, showing 
the variation of dimensionless deviatoric bed elevation η~  (inner variable) with 
dimensionless distance x~  (inner variable) over the complete cycle of the last hydrograph 
of the run.  Note that bed elevation fluctuations are restricted to a hydrograph boundary 
layer within which x~  is less than about 2. 
 

 
Figure 28.  Sample calculation for uniform sediment at mobile-bed equilibrium, showing 
the variation of dimensionless bedload transport rate qn with dimensionless distance x~  
(inner variable) over the complete cycle of the last hydrograph of the run.  Note that qn is 
held constant at the feed point ( x~  = 0), but varies cyclically with the hydrograph farther 
downstream.  This cyclic variation in time becomes invariant in x~  for x~  greater than 
about 2. 
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Figure 29.  Plot of dimensionless hydrograph boundary layer thickness δx~  as a function 
of dimensionless hydrograph amplitude for the case of uniform sediment.  A very small 
tolerance χtol of 0.01 was used for these calculations. 
 

 
Figure 30.  Crude estimate of the variation of the ratio δ/L of hydrograph boundary layer 
thickness to reach length versus volume sediment feed rate per unit width qbTf for the 
hydrograph runs of Table 1, based on the analysis for uniform sediment. 
 


