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NOTE ON THE ANALYSIS OF PLUNGING OF DENSITY FLOWS 

Gary Parker1, Member, ASCE and Horacio Toniolo2 

ABSTRACT 
 This note is devoted to the correction of an error in a calculation contained 
in a classical published paper on the plunging of river flows as they enter lakes or 
reservoirs.  The correction of the error provides a felicitous result, according to 
which not only the ratio of underflow thickness just after plunging to depth just 
before plunging, but also the densimetric Froude numbers both just before and 
just after plunging are all specified as a function of a single parameter.  This 
single parameter characterizes the tendency of plunging to entrain ambient water 
into the density underflow. 
 
INTRODUCTION 

When relatively denser river water meets relatively lighter ambient fluid as 
it flows into a lake or reservoir the dense river flow often plunges to form a 
bottom underflow.  When the density difference is mediated by the presence of 
suspended mud in the water column of the river, the resulting underflow is 
termed a turbidity current.  The phenomenon of plunging has been studied by a 
number of authors, including Singh and Shah (1971), Savage and Brimberg 
(1975), Jain (1981), Farrell and Stefan (1986) and Bournet et al. (1999). 

 
Here attention is focused on the classical paper due to Akiyama and 

Stefan (1984), abbreviated to A&S in the text below.  A&S offer a 1D formulation 
of plunging based on considerations of conservation of volume, mass and 
momentum.  Momentum balance is imposed on two control volumes, referred to 
as Control Volume I and Control Volume II below. 

 
The imposition of the conservation of volume, mass and momentum within 

Control Volume I results in a relation for the ratio Hd/Hp of the layer thickness of 
the underflow just after plunging Hd to the depth just before plunging Hp as a 
function of a) the densimetric Froude number just before plunging Frdp and b) a 
dimensionless parameter γ that describes the degree to which plunging entrains 
ambient water into the underflow. 

 
The further imposition of momentum balance on Control Volume II adds a 

second relation, so that both Frdp and Hd/Hp, as well as the densimetric Froude 
number Frdd just downstream of plunging are all specified as functions of γ alone.  
A&S, however, missed this conclusion due to an error in their calculation.  The 
error consists of the assumption of a critical value of Frdd (i.e. a value of unity 
when a relevant shape factor is also set equal to unity) in the case of plunging on 

                                                 
1 1Prof., Dept. of Civil & Environmental Engineering and Dept. of Geology, University of Illinois, 
Ven Te Chow Hydrosystems Laboratory, Urbana IL 61801 
2 Asst. Prof., Dept. of Civil Engineering, University of Alaska, Fairbanks, AK 75551 
 



 2

a “steep” slope, and a normal value of Frdd in the case of plunging on a “mild” 
slope.  These assumptions are not only erroneous but also unnecessary, for the 
elegant formulation of A&S already specifies Frdd independently. 

 
In the present note the error is corrected, and a new set of relations for 

plunging is presented.  The new relations are placed in both implicit analytical 
and explicit graphical form to allow for easy application. 
 
INCOMPRESSIBILITY AND MASS BALANCE 

The steady 1D plunging flow from a river into a body of water described in 
Figure 1 is considered.  Dense river water flows from left to right into the ambient 
water of a lake, e.g. a reservoir.  At point “pl” in the figure the river water plunges 
to form a dense underflow.  The density of the river water, ρr is slightly greater 
than that of the ambient water in the lake, ρa.  The depth and depth-averaged 
flow velocity in the river at section “p” just upstream of the plunge point are Hp 
and Up, respectively.  Just downstream of the plunge point at section “d” the layer 
thickness and layer-averaged velocity of the dense underflow are Hd and Ud, 
respectively.  Plunging draws ambient water toward the plunge point at layer-
averaged velocity Ua.  The density of the underflow at section “d” is ρd, a value 
that is greater than ρa but less than ρr due to mixing of the ambient water and 
river water in the process of plunging.  Points “p” and “d” are sufficiently close to 
each other to approximate the thickness of the ambient water at section “d” as 
equal to Hp – Hd. 

 
Here plunging is treated as a shock in the same way as a hydraulic jump.  

The conditions of incompressibility (volume conservation) and mass conservation 
require the following respective conditions with respect to Control Volume I; 
 0HU)HH(UHU dddpapp =−−+       (1) 
 0HU)HH(UHU ddddpaappr =ρ−−ρ+ρ      (2) 
The densities ρr and ρd are written as 
 )1(,)1( dadrar ε+ρ=ρε+ρ=ρ       (3a,b) 
where εr << 1, εd << 1 and εd < εr.  Defining a coefficient of mixing γ of ambient 
water into the underflow as 

 
pp

dpa

HU
)HH(U −

=γ         (4) 

it follows that Eq. (1) can be rewritten as 
 ddpp HU)1(HU =γ+         (5) 
Eq. (2) reduces with Eqs. (3), (4) and (5) to the result 

 
γ+

ε
=ε

1
r

d          (6) 

The above formulation and results are identical to those appearing in A&S. 
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MOMENTUM BALANCE: CONTROL VOLUME I 
Momentum balance over Control Volume I is now pursued.  For simplicity 

the vertical profiles of density and velocity are assumed to be uniform in the river 
flow at section “p” just upstream of the plunge point, the dense underflow at 
section “d” just downstream of the plunge point, and the flow of ambient water at 
section “d” just downstream of the plunge point.  These assumptions correspond 
to setting the shape factors S1 and S2 of A&S equal to unity, a condition that is 
easily relaxed if desired.  In point of fact, Parker et al. (1987) found experimental 
values for S1 and S2 of 1.00 and 0.99, respectively, for the case of turbid 
underflows.  The values, however, do not pertain to underflows immediately after 
plunging. 

 
Momentum balance over Control Volume I requires that 

 0FF)HH(UHU)1(HU)1( pdppdp
2
aad

2
ddap

2
pra =−+−ρ−ε+ρ−ε+ρ   (7) 

where Fpp and Fpd denote the pressure forces on the left- and right-hand sides of 
the control volume, respectively.  These pressure forces are assumed to be 
hydrostatic, and are given by the relations 
 ∫∫ == pp H

0 dpd

H

0 ppp dypF,dypF       (8a,b) 

where y denotes an upward vertical coordinate from the bed and p denotes 
pressure.  The relations for pressure at sections “p” and “d” are, respectively 

 

⎩
⎨
⎧

<<−ε+ρ+−ρ
<<−ρ

=

−ε+ρ=

dddadpa

pdpa
d

prap

Hy0,)yH)(1()HH(g
HyH,)yH(g

p

)yH)(1(gp

   (9a,b) 

where g denotes the acceleration of gravity.  Evaluating Eqs. (8a,b) with Eqs. 
9(a,b), it is found that 

 
( ) 2

dda
2
d

2
papd

2
prapp

H)1(g
2
1HHg

2
1F

H)1(g
2
1F

ε+ρ+−ρ=

ε+ρ=
    (10a,b) 

 
Substituting Eqs. (10a,b) into Eq. (7), and applying the standard 

Boussinesq approximation following from the assumptions εr << 1 and εd << 1, it 
is found that 

 0gH
2
1gH

2
1)HH(UHUHU 2

dd
2
prdp

2
ad

2
dp

2
p =ε−ε+−−−    (11a) 

Reducing Eq. (11a) further with Eqs. (5) and (6), momentum balance in Control 
Volume I takes the form 

 0gH
12

1gH
2
1

HH
HU

H
)1(HU

HU 2
d

r2
pr

dp

22
p

2
p
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ε

−ε+
−
γ

−
γ+

−   (11b) 
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The densimetric Froude number Frdp just upstream of the plunge point, 
densimetric Froude number Frdd just downstream of the plunge point and the 
ratio ϕ are defined as follows; 

 
p

d

dd

2
d

pr

2
p

H
H,

gH
U,

gH
U

=ϕ
ε

=
ε

= 2
dd

2
dp FrFr    (12a,b,c) 

Eq. (11) can be rewritten with Eqs. (12a) and (12c) in the form 

 ( ) 0
)1(2

1
2
1

)1(
1 22

2
dp

2
2
dp

2
dp =

γ+
ϕ

−+
ϕ−

γ
−

ϕ
γ+

− FrFrFr     (13) 

 
Between Eqs. (12a,b,c), (5) and (6) it is found that 

 3

3
2
dp

2
dd

)1(
ϕ
γ+

= FrFr         (14) 

Eq. (13) allows for the computation of the ratio ϕ as a function of the densimetric 
Froude number Frdp just upstream of plunging and the mixing ratio γ.  That is, if 
εr, Up, Hp and γ are specified, the values εd, Ud and Hd just downstream of 
plunging can be computed from Eq. (13) and Eqs. (5), (6), (12a) and (12c). 
 

Eq. (13) specifies a fourth-order polynomial for ϕ.  In the limiting case γ → 
0 it reduces to a third-order polynomial in ϕ, which is easily factored and solved 
to yield the result 

 
2

811 2
dpFr++−

=ϕ         (15) 

i.e. a relation of precisely the same form as the one for conjugate depths of a 
hydraulic jump. 
 
MOMENTUM BALANCE: CONTROL VOLUME II 

As noted above, Eq. (13) allows the computation of the flow just 
downstream of the plunge point if Frdp and γ are specified.  A&S go one step 
farther, however, to apply momentum balance to Control Volume II of Figure 1.  
Note that the left-hand side of Control Volume II is located at the point “pl,” i.e. 
plunge point, rather than at “p” just upstream of it in Figure 1.  As a result the flow 
velocity across the left-hand side of Control Volume II can be set equal to zero.  
In addition, A&S assume a hydrostatic pressure distribution on both sides of 
Control Volume II.  This assumption is not likely to be completely accurate on the 
left-hand side, because the downwelling there creates a non-hydrostatic 
contribution to pressure.  Assuming, however, that this non-hydrostatic 
component can be neglected, the following form for momentum balance is 
obtained; 

 0)HH(g
2
1)HH(g)1(

2
1)HH(U 2

dpa
2

dpradp
2
aa =−ρ−−ε+ρ+−ρ−   (16a) 

or upon reduction 

 0)HH(g
2
1)HH(U 2

dprdp
2
a =−ε+−−       (16b) 
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Further reducing Eq. (16b) with Eq. (4), 

 2
dpr

dp

22
p

2
p )HH(g

2
1

)HH(
HU

−ε=
−
γ

       (17) 

 
Between Eqs. (12a, 12c) and (17) the densimetric Froude number just 

upstream of the plunge point is evaluated as 

 3
2

2
dp )1(

2
1

ϕ−
γ

=Fr         (18) 

Substituting Eq. (18) into Eq. (13), the following relation is found for the ratio ϕ; 

 0
)1(

1)1()1()1(1)1(1 2
22

3

2
3

2 =
γ+

ϕ
−+ϕ−−γ+

ϕ
ϕ−

γ
−ϕ−

γ
   (19) 

 
The addition of the momentum balance of Control Volume II is seen to 

change the character of the problem so as to provide extra information.  In the 
case of Eq. (13), it was necessary to specify both Frdp and γ (or equivalently Frdd 
and γ) in order to compute ϕ.  It is seen from Eqs. (18) and (19), however, that 
both Frdp and ϕ can be computed once γ is specified.  That is, the addition of Eq. 
(17) allows for direct computation of the densimetric Froude number just 
upstream of plunging. 

 
Rewriting Eq. (19) with the definition 

 ϕ−=χ 1          (20) 
it is found that 

 0)1(
1

)1(
1

2
2

2222
3

3 =χ−
γ+

γ
−γ+γχ−γ+

χ−
χ

−χ     (21) 

again yielding a fourth-order polynomial for χ.  In the limit as γ → 1 the only 
solution to Eq. (21) is 

 0=χ           (22) 
or thus 

 pd HH,1 ==ϕ        (23a,b) 
i.e. no plunging.  That is, Eq. (21) implies that plunging is impossible in the 
absence of mixing.  Substituting this result directly into Eq. (18) yields an 
indeterminate result for the densimetric Froude number Frdp just upstream of 
plunging. 
 

The indeterminancy can be resolved by seeking an asymptotic expansion 
in small γ of the solution to Eq. (21) of the form 
 ...a m +γ=χ          (24) 
Substituting Eq. (22) into Eq. (21), the appropriate form is found to be 
 ...2 3/23/1 +γ=χ         (25) 
which when substituted into Eq. (18) yields the result 
 1im dp0

=
→γ

Frl          (26) 
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RELATIONS FOR PLUNGING 

The authors were not able to factor, and thus solve Eq. (21) analytically for 
the case of finite γ.  The equation is, however, readily solved numerically.  Figure 
2 shows the results of this solution, augmented with Eqs. (14) and (18), to yield 
predictions of ϕ, Frdp and Frdd as functions of the mixing coefficient γ. 

 
The results appear eminently reasonable.  For the case γ = 0 the expected 

result is obtained: Frdp and Frdd are both equal to unity.  Frdp then decreases 
monotonically below unity as γ increases.  Over the range 0 < γ < 0.14 it is seen 
that Frdd is modestly less than unity.  At a value of γ near 0.14 it again rises to 
unity.  Over the range γ > 0.14 Frdd increases monotonically with increasing γ 
above unity.  The analysis indicates that plunging to supercritical flow is not 
possible unless the mixing coefficient γ is sufficiently large. 
 
DISCUSSION 
 It is of value to recount in precise detail how the above results differ from 
A&S.  The present paper is completely equivalent to A&S in regard to volume 
conservation [present Eq. (1) ↔ A&S Eq. (4)], mass conservation [present Eq. 
(2) ↔ A&S Eq. (5)], momentum conservation on Control Volume I [present Eq. 
(11a) ↔ A&S Eq. (16)] and momentum conservation on Control Volume II 
(present Eq. (16a) ↔ A&S Eq. (17)]. 
 
 In the analysis of A&S, the present Eq. (16b) [A&S Eq. (17)] is used to 
eliminate only the term containing the ambient flow velocity Ua in Eq. (11a) [A&S 
Eq. (16)] to obtain the result 

 0H
1

11g
2
1HgHHUHU 2

drdprd
2
dp

2
p =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
γ+

+ε−ε+−     (27) 

[A&S Eq. (18)].  A&S then solve for Up in terms of Ud using Eq. (5), and reduce 
using the definition of Eq. (12b) for the densimetric Froude number just 
downstream of plunging and Eq. (6) to obtain the polynomial 

 0
1

1
1

1
2

21 2
dd2

dd

2

=
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+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎠
⎞

⎜
⎝
⎛ +
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⎠

⎞
⎜⎜
⎝

⎛
ϕ

FrFr      (28) 

[A&S Eq. (20), in which they denote 1/ϕ as the parameter K]. 
 
 The above equation is completely consistent with the present analysis.  
A&S then make one of two assumptions in Eq. (28): that the densimetric Froude 
number just downstream of plunging Frdd is equal to the critical value on “steep” 
slopes and the value Frdn associated with normal flow on “mild” slopes, i.e. the 
choices 
 1dd =Fr          (29a) 
or 
 dnFrFrdd =          (29b) 
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corresponding to the assumption of shape factors S1 and S2 in A&S equal to 
unity [A&S Eq. (42) or (40), respectively with S1 = 1 and S2 = 1].  In the case of 
Eq. (29a) this allows for the solution of Eq. (28) in closed form, yielding 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

γ+
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⎠
⎞

⎜
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21
2

2
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    (30) 

[A&S Eq. (46)].  The corresponding solution in the case of Eq. (29b) is A&S Eq. 
(45). 
 
 The error in the analysis of A&S is the assumption of Eqs. (29a,b), 
according to which the densimetric Froude number Frdd. just downstream of 
plunging must be equal to either the critical or normal value depending on the 
slope.  In point of fact the analysis of A&S itself does not allow an independent 
specification of Frdd.  Rather, Frdd must be related to Frdp according to Eq. (14), 
which must in turn be related to ϕ and γ according to Eq. (18).  Using Eqs. (14) 
and (18) in conjunction with Eq. (28) results in Eq. (19), which specifies ϕ as a 
function of γ alone.  Once ϕ is computed from this relation, Frdp is computed from 
Eq. (18) and Frdd is computed from Eq. (14).  It is seen from Figure 2 that the 
only values of γ resulting in a value of Frdd of unity are the two choices 0 and 
0.14. 
 
 Correction of the error, however, allows a felicitous conclusion.  The basic 
structure of the analysis of A&S (1984), in terms of the conservation of volume, 
mass and momentum in Control Volume I and the conservation of momentum in 
Control Volume II is in fact sufficient to specify not only the relation between 
underflow thickness Hd just after plunging and the flow depth Hp just before 
plunging, but also the densimetric Froude numbers Frdp and Frdd just before and 
just after plunging, all as functions of a single dimensionless parameter γ 
characterizing mixing at the plunge point. 
 
CONCLUSION 
 The correction of an error in the computations of Akiyama and Stefan 
(1984) has a most felicitous result.  The basic structure of their analysis proves 
sufficient to specify all relevant parameters concerning 1D plunging, including: a) 
the ratio of underflow thickness just downstream to depth just upstream; and b) 
the densimetric Froude numbers just upstream and downstream, as functions of 
a single dimensionless parameter γ.  This parameter characterizes the 
entrainment of ambient fluid into the underflow at the point of plunging. 
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APPENDIX II.--NOTATION 
The following symbols are used in this paper: 
a = coefficient in Eq. 24; 
Fpd = pressure force just downstream of plunging, defined by Eq. 10b; 
Fpp = pressure force just upstream of plunging, defined by Eq. 10a; 
Frdd = densimetric Froude number just upstream of plunging, 
  defined by Eq. 12a; 
Frdp = densimetric Froude number just downstream of plunging, 

defined by Eq. 12b; 
g = gravitational acceleration; 
Hd = thickness of density underflow just downstream of plunging; 
Hp = river depth just upstream of plunging; 
m = exponent in Eq. 24; 
p = pressure; 
Ud = layer-averaged velocity of density underflow just downstream of  
  plunging; 
Up = layer-averaged velocity of density underflow just upstream of  
  plunging; 
y = coordinate defined upward normal from the bed; 
χ = 1 - ϕ = 1 – (Hd/Hp); 
εd = fractional density excess in the underflow just downstream of  
  plunging; 
εr = fractional density excess in the river water just upstream of  
  plunging; 
γ = dimensionless mixing parameter defined by Eq. 4; 
ϕ = the ratio Hd/Hp; 
ρa = density of the ambient water in the lake or reservoir; 
ρd  density of the underflow just downstream of plunging; 
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ρr = density of the river water just upstream of plunging. 
 
FIGURE CAPTIONS 
Figure 1.  Definition diagram for plunging showing Control Volumes I and II. 
Figure 2.  Predictions for ϕ, Frdp and Frdd, as functions of γ. 
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