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ABSTRACT 
Deltas form where rivers meet standing bodies of water such as lakes and reservoirs.  A delta 
is composed of a coarse-grained fluvially-deposited topset, a coarse-grained prograding 
foreset deposited by grain avalanching and a fine-grained bottomset deposited from a surface 
sediment plume or a plunging turbidity current.  Here the case of a 1D delta in a body of fresh 
water with a bottomset emplaced by a plunging turbidity current is considered.  The authors 
have previously developed a moving-boundary numerical model pertaining to such deltas.  In 
that model the coarse-grained material is characterized with a single sand size and the fine-
grained material is characterized with a single mud (silt-clay) size that drives the plunging 
turbidity current.  Here the analysis is extended to the case for which the turbidity current is 
driven by two agents: mud and dissolved salt.  Salt serves as a surrogate for a mud so fine that 
its fall velocity can be neglected.  The results of the numerical model are tested against an 
experiment. 
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INTRODUCTION 
Fluvial fans are cone-shaped zones of sedimentation downstream of an upland sediment 
source.  They may be completely terrestrial, or may have a distal portion ending in standing 
water.  An illustrative example of the former type is the fan of the Kosi River, India, which 
emanates from the Himalaya Mountains (Fig. 1).  Fans of the latter type are called fan-deltas, 
examples of which are shown in Fig. 2 (natural) and Fig. 3 (modified by human interference).  

 
The most common morphology associated with fan-deltas is that of sand-bed streams.  These 
usually carry significantly more mud as wash load than they do sand as bed-material load.  
The typical structure of a deltaic deposit in a lake or reservoir is illustrated in Fig. 4 (e.g. 

 
Figure 1.  History of channel 
change on the Kosi Fan, India 
(Gole and Chitale, 1966). 

Figure 2.  Fan-delta in 
the Yukon, Canada. 

 
Figure 3.  Sediment from the 
Nemadji River, USA enters 
Lake Superior at Superior 
Harbor. 
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Vanoni 1975).  The sand is emplaced fluvially on the topset and by avalanching on the 
foreset.  The mud-laden water during floods may form a surface plume, from which the 
sediment rains down to emplace the bottomset deposit. In other cases, however, this water 
plunges over the steep delta face and continues to flow downslope into deep water as a muddy 
turbidity current, which then emplaces the bottomset deposit.  This latter case is considered 
here.  The foreset sand tends to prograde over the bottomset mud in time as all three regions 
interact with each other. 

 
The Colorado River, for example, rapidly constructed a large delta at the head of Lake Mead 
after the closing of Hoover Dam.  Fig. 5 (Grover & Howard 1937) documents the 
development of a sandy topset and foreset, and muddy bottomset, from 1935 to 1948, after 
which time the construction of Glen Canyon Dam upstream cut off most of the sediment 
supply.  Of particular interest is the interface between the foreset sand and the bottomset mud, 
which behaves as a moving boundary. 
 

MOTIVATION 
Deltaic sedimentation can seriously limit the performance of a river-fed reservoir and cause 
significant morphological changes in the river channel.  Some of the repercussions imposed 
by sedimentation processes in reservoirs and lakes are: loss of available storage, increased risk 
of flooding, silting up of harbors in the upper river reach, blockage of intake structures, 
sediment entrainment at power plant intakes, and problems with navigation. 
 
The numerical model reported here was motivated by the delta of the Nemadji River, USA at 
Superior Harbor, where it flows into Lake Superior (Fig. 3).  The mean annual loading of the 
stream at Superior Harbor is about 131,000 t/yr, 89 % of which is mud and the rest being 
sand.  Kostic & Parker (in press (a), in press (b)) developed a 1D moving-boundary numerical 
to capture the co-evolution of the topset, foreset and bottomset in such deltas.  They verified 
their model against two experiments and applied it at field scale.  That model includes one 
grain size to characterize the sand which deposits on the topset and foreset, and another grain 
size to characterize the mud which deposits on the bottomset. 
 
Here the model is extended to include a conservative phase in addition to the mud phase.  The 
conservative phase is realized experimentally with the addition of dissolved salt to the river 
water.  The turbidity current is then driven by the excess weight of both the mud and the 

 
 Figure 5. Deposition pattern along the 
Colorado River through Lake Mead,  
1935-1948.  

Flow direction 

 
Figure 4. Typical structure of a deltaic 
deposit in a lake or reservoir 
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dissolved salt.  The dissolved salt serves as a surrogate for a second mud phase that is too fine 
to settle out in the reservoir.  The extended model is verified against an experiment similar to 
the two used to verify the earlier model. 

 
MODEL FORMULATION 

The model consists of two coupled submodels: (1) a fluvial delta model that describes the 
deposition of sand on the river bed and its avalanching down the delta face into deeper water; 
(2) a turbidity current model that predicts the evolution of the bed of a lake or reservoir as a 
result of the deposition of mud from a plunging turbidity current.  The turbidity current is 
driven by a combination of two mud phases, one coarse enough to settle out with fall velocity 
vm and the other so fine that its fall velocity can be neglected.  In the experiment discussed 
below the fine phase is replaced with dissolved salt as a surrogate.  With this in mind the two 
phases that drive the turbidity current are referred to below as “mud” and “salt” for simplicity. 
 
Fluvial Submodel  The relations governing the flow in the fluvial zone, i.e. upstream of the 
top of the foreset include the conservation of fluid mass, downslope momentum and bed 
sediment.  The hydrodynamic part of the model encompasses the quasi-steady flow 
approximation (e.g. de Vries, 1965) since the variation of discharge in many low-slope rivers 
is sufficiently gradual so as to allow the assumption of steady flow in each step of hydrograph.  
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where x  = streamwise distance,, t = time, g = acceleration of gravity, wq  = water discharge 
per unit width, Sλ  = porosity of sand deposit, Sq  = volume transport rate of sand per unit 
width (total bed material load), and fC  = bed friction factor.  The dependent variables are the 
depth of fluvial flow fh , the river velocity fU  and the elevation of the river bed fη . 
 
In most sand-bed rivers near a delta the flow is subcritical in the Froude sense, so that (1) and 
(2) reduce to the standard backwater formulation.  However, during the course of three 
experiments designed to verify the numerical model at hand (Kostic & Parker, in press (b)), 
the flow was either supercritical or near-supercritical, with the Froude number slightly below 
unity.  In such a case (2) can be approximated in terms of quasi-uniform normal flow 
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In order to close the above governing equations the friction coefficient fC  is assumed to be 
constant, and the sand transport rate Sq is evaluated form the Engelund-Hansen relation for 
total bed material load (Engelund & Hansen, 1972). 
 
Initial and boundary conditions for the fluvial model are discussed in detail in Kostic & Parker 
(in press (a)).  They are briefly summarized herein.  At time t = 0, the elevation of the topset 
bed for every grid point within the fluvial domain is determined from a specified initial slope 
Sf0 of the fluvial bed.  Three boundary conditions on the fluvial domain are required, one for 
the fluvial inflow boundary and two for the outflow boundary.  These are specified as follows: 
 ( ) ( )
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where qS0 is the volume sand feed rate per unit width, 
fxf =

η and 
lx=

η  denote the elevation 

of the top (where x = f ) and toe (where x = l ) of the foreset deposit respectively, and f&  is the 
rate of delta face progradation.  Zl denotes the water surface elevation of the lake or reservoir 
(taken to be constant in time in the present analysis), 

fx
Fr

=
 the Froude number at the top of 

the foreset, and 
fx

h
=

∆ = the height of the hydraulic jump formed when supercritical flow 

impinges upon an infinite body of standing water.  Finally, d is a coefficient defined such that 
0=d  for subcritical river flow (the usual case in the field) and 1d =  for supercritical flow (a 

common occurrence in the experiments). 
 
Equation (5) represents the simplest implementation of a delta-front “shock condition” which 
is derived in Swenson et al. (2000) and Kostic & Parker (in press (a)).  This condition imposes 
a balance between the sand delivered to the top of the foreset deposit and the rate of delta face 
progradation. 
 
Turbidity current submodel  The layer-averaged equations of a dense bottom underflow 
flowing into an unstratified, fresh body of water are considered below (Kostic & Parker, in 
press (a)); 
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In the above relations h = underflow thickness, U  = layer-averaged underflow velocity, φ = 
layer-averaged excess fractional density of the underflow, C  = layer-averaged volume 
concentration of mud and S = layer-averaged concentration of dissolved salt within the 
underflow.  In addition, we  = entrainment coefficient of ambient water into the underflow, Dc  
= bottom friction coefficient of the underflow, λ  = porosity of the bottomset deposit, vm = fall 
velocity of the mud, and ro = an order-one multiplicative constant.  The parameters φ, C and S 
are related as follows; 
 SRC β+=φ  (12) 
where R = submerged specific gravity of the mud and β = coefficient based on a linearized 
relation between salt concentration S and fraction excess density. 
 
In order to close (7 - 12) Dc and ro are assumed to be prescribed constants and we  is taken to 
be a prescribed function of the flow Richardson number Ri , given as  
 2UhgRi φ=  (13) 
The mud fall velocity vm is calculated from the relation of Dietrich (1982). 
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Initial and boundary conditions for the turbidity current model are discussed in detail in 
Kostic & Parker (in press (a)).  At t = 0 the dependent primitive variables h, U, C and S at all 
nodal points are set equal to their values ho, Uo, Co and So immediately after the river inflow 
plunges to form an underflow.  The plunging formulation incorporated in the turbidity current 
model is described in Kostic & Parker (in press (a)).  The initial elevation of the bottomset 
bed for every grid point is determined from a prescribed initial slope So of the bed of the lake 
or reservoir.   Because of the hyperbolic nature of governing equations, the number and 
location of physical boundary conditions correspond to the number and location of 
characteristics that propagate into the flow domain (Kostic & Parker, in press (a)).  For an 
underflow that is supercritical in the Richardson sense, there are three physical inflow 
boundary conditions, and two outflow boundary conditions.  These are formulated as follows. 
 
The inflow boundary conditions take the form 
 ( ) ( ) ( ) ooo t,lx,Ut,lxU,ht,lxh ϑϑ ======  (14-16) 
where ϑ  is the new primitive variable, defined as 
 S)1(C SOSO ϕϕϑ −+=  (17) 
The buoyancy ratio )SRC/(RC oooSo βϕ +=  immediately after the plunge point represents the 
fraction of the buoyancy force that derives from the presence of suspended sediment (as 
opposed to dissolved salt). 
 
The outflow boundary conditions take the form 

 ( ) ( ) ( )st,sx,
td
sdt,sxU oηη ====  (18,19) 

where ηo is an antecedent bed elevation as yet unmodified by the turbidity current, and s 
denotes the position of the turbidity current head.  The remaining variables are obtained from 
the flow domain by means of first-order extrapolation. 
 

NUMERICAL SCHEME AND LINKING OF SUBMODELS 
The turbidity current model is handled by the explicit ULTIMATE QUICKEST method 
(Leonard 1979 & 1991), which is third order in both time and space.  The scheme provides a 
robust, mass-conservative formulation that is capable of dealing with highly advective 
transport and complex boundary conditions.  The sediment part of the fluvial model is handled 
by the explicit QUICKEST method, while the hydrodynamic part is solved with a second-
order Runge-Kutta scheme in the case of subcritical flow.  For supercritical flow the sediment 
part is solved by means of the explicit QUICKEST method for all computational points except 
the one farthest downstream, where the slope is determined by a Newton-Raphson iterative 
procedure. 
 
The fluvial model is linked to the turbidity current model via the physical outflow boundary 
condition (5) for the fluvial model and a numerical inflow boundary condition for the 
underflow model.  The latter condition imposes continuity of bed elevation at the foreset-
bottomset break, which for constant foreset slope Sa takes the form 
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where 
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S
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 denotes the bottomset slope at the toe of the delta face, 
fxfS

=
 is the topset slope 

at the top of the delta face, and l&  is the speed of progradation of foreset-bottomset break. 
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MODEL VERIFICATION 

The numerical model outlined above was 
tested against two experiments 
(Experiments 1 and 2) on progradational 
sand-mud deltas carried out at St. Anthony 
Falls Laboratory, University of Minnesota 
and reported in Kostic and Parker (in press 
(b)).  Both experiments were performed 
with a black sand and white mud, without 
the addition of dissolved salt in the 
inflowing water.  The experimental facility, 
shown in Figure 6 incorporates a flume that 
was specially modified to allow the 
modeling of continuous turbidity currents 

extending for up to one hour (Garcia 1994).  Details on experimental set-up and procedure can 
be found in Kostic & Parker (in press (b)) 
 
Two images documenting these experiments are presented in Figs. 7 and 8.  Fig. 7 illustrates 
the sand-mud delta just a few seconds before the completion of Experiment 2.  Coal has been 
placed into the flow to allow for visualization of the turbidity current.  Topset, foreset and 
bottomset deposits are clearly defined.  The turbidity current typically plunged one-third of 

the way down the foreset slope.  The passage of six turbidity currents over the sandy foreset 
reduced the slope of the foreset deposit from 35o to an average of 29.2o.  An expanded view of 
the interface between the foreset and bottomset at the end of Experiment 1 is shown in Fig. 8.  
The numerical model proved able to reproduce the results of these two experiments with a 
minimum of tuning, as outlined in Kostic and Parker (in press (a), in press (b)). 
 
An additional experiment, Experiment 3 was conducted with the presence of dissolved salt in 
the inflowing muddy water in order to a) increase the strength of the turbidity current and c) 
study the effect of a conservative component in the turbidity current, i.e. a component that is 
not lost due to settling.  The black sand and white mud were the same as those used in Kostic 
and Parker (in press (b)).  The channel width was 0.305 m.  The inflow rate of water was 2 l/s.  
In the first part of the experiment only black sand was fed into the channel at a rate of 32.6 
g/s, allowing a Gilbert delta to build out, and forming the profile T0 in Fig. 9.  In the second 
part of the experiment white mud (silica flour) was mixed into the water and fed into the 
channel at a rate of 103.3 g/s, without halting the supply of black sand.  Four runs of about 14 

 
Figure 6. Experimental set-up. 

Figure 8. Expanded view of moving 
boundary in Experiment 1. 

Flow direction 

Sand-mud 
interface  

 
Figure 7. Resulting fan-delta right before the 
end of Experiment 2. 
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minutes each were continued in this way, making the deposit profiles denoted T1 – T4 in 
Fig.9.   

 
In Fig. 9 the profile S0 describes the new morphology due to a slide event caused by a slight 
variation in water surface elevation after the cessation of run T4.  Profiles S1 - S3 correspond 
to the resulting deposits at the end of three consecutive 14-minute runs for which the 
underflows were driven by the combination of mud and dissolved salt.  The concentration of 
dissolved salt was 41.19 ppt, and the excess density of the inflow water about 0.0644 (nearly 
twice as high as for the case with mud but no salt), resulting in a notably increased strength of 
the muddy underflow.  The experiment confirmed an earlier result of Kostic et al. (2002), 
according to which a muddy turbidity current overriding a sandy foreset can substantially 
reduce the foreset angle.  The average slope of the foreset deposit for the run T0 with only 
black sand was found to be 35.5°; in the runs T1 – T4 with white mud but no salt the angle 
was reduced to d to be 25.48°.  With the addition of salt in runs S1 – S3 the foreset angle was 
further reduced to 16.10°. 
 
The moving-boundary numerical model presented above was used to simulate Experiment 3.  
The conditions of the simulation were very similar to those outlined in Kostic and Parker (in 
press (b)), except that a) the effect of dissolved salt was included and b) careful attention was 
paid to the decline in foreset angle caused by overrun of the foreset by a) a muddy turbidity 
current and b) a muddy turbidity current strengthened with dissolved salt.  The numerical 
simulation of Fig. 10 was obtained with a minimum of data fitting.  Note that the initial 
condition for the numerical simulation of run S1 was adjusted to reflect the slide on the delta 
foreset observed in the experiment. 
 

CONCLUSIONS 
The numerical model presented in Kostic and Parker (in press (a), in press (b)) is the first 
interactive, physically-based model of deltaic sedimentation in lakes and reservoirs, capable 
of capturing the essence of the topset, foreset and bottomset deposition in lakes and reservoirs, 
and reproducing the evolution of the sand-mud interface in deltas.  Here the model is extended 
to include a conservative component to the turbidity current.  The model was tested against 
data for an experiment, Experiment 3, in which the conservative component was dissolved 
salt, which acted to intensify the turbidity current.  Good agreement with data was obtained 
with a minimum of tuning. 
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Figure 9. Measured bed profiles for Exp. 3. 
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Figure 10. Numerical simulation of Exp. 3.
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An interesting feature of Experiment 3 was a marked reduction in the foreset angle with 
increasing strength of the turbidity current overriding it.  In the absence of an overriding 
turbidity current, the foreset prograded at the angle of repose of 35.5°.  The overriding 
turbidity current reduced the foreset angle to 25.48°.  Further addition of dissolved salt to the 
turbidity current reduced the angle to 16.10°.  These observations are in line with the 
theoretical formulation of Kostic et al. (2002), who indicate the possibility of a reduction in 
foreset angle to as low as 1° in the field by the same mechanism. 
 

ACKNOWLEDGEMENTS 
This research was funded by Minnesota Sea Grant and the National Center for Earth-surface 
Dynamics; the Center is funded by the National Science Foundation.  This paper represents a 
contribution of the National Center for Earth-Surface Dynamics. 
 

REFERENCES 
DE VRIES, M. (1965). Consideration about non-steady bed-load transport in open channels. 

Proceedings, IAHR 11th Congress, 3.8.1-3.8.8. 
DIETRICH, E. W. (1982). Settling velocity of natural particles. Water Resources Research, 

18(6), 1626-1982.  
ENGELUND, F. & HANSEN, E. (1972). A monograph on sediment transport. Technisk 

Forlag, Copenhagen, Denmark. 
GARCIA, M. (1994). Depositional turbidity currents laden with poorly sorted sediment: 

Journal of Hydraulic Engineering, 120(11), 1240-1263. 
GROVER, N. C. & HOWARD, C. L. (1937). The passage of turbid water through Lake 

Mead: Transactions American Society of Civil Engineers, 103, 720-732. 
GOLE, C. V. & CHITALE, S. V. (1966).  Inland delta building activity of the Kosi River.  

Journal of Hydraulic Engineering, 92(2), 111-126. 
KOSTIC, S. & PARKER, G. (in press (a)). Progradational sand-mud deltas in lakes and 

reservoirs: Part 1. Theory and numerical modeling. Journal of Hydraulic Research. 
KOSTIC, S. & PARKER, G. (in press (b)). Progradational sand-mud deltas in lakes and 

reservoirs: Part 2. Experiment and numerical simulation. Journal of Hydraulic Research.  
KOSTIC, S., PARKER, G. & MARR, J. (2002) Role of turbidity currents in setting the 

foreset slope of clinoforms prograding into standing fresh water, Journal of Sedimentary 
Research, 72(3), 353-362. 

LEONARD, B.P. (1979). A stable and accurate convection modeling procedure based on 
quadratic upstream interpolation. Comp. Methods in Applied Mechanics and Engineering, 
19, 59-98. 

LEONARD, B.P. (1991). The ULTIMATE conservative difference scheme applied to 
unsteady one-dimensional advection. Comp. Methods in Applied Mechanics and 
Engineering, 88, 17-77. 

SWENSON, J. B., VOLLER, V. R., PAOLA, C., PARKER, G. & MARR, J. (2000). Fluvio-
deltaic sedimentation: A generalized Stefan problem.  European Journal of Applied Math., 
11, 433-452. 

VANONI, V. A. (1975). Sedimentation Engineering. American Society of Civil Engineers, 
New York N.Y., 745 p 


