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ABSTRACT  Rivers form deltas wherever they flow into standing water such as a lake, a 
reservoir or the ocean.  Under conditions of constant base level of standing water deltas can 
be expected to gradually prograde outward, so that the delta shoreline regresses “seaward.”  
Rising base level such as that which prevailed in the ocean at the end of the last glaciation, 
however, can not only slow this progradation, but reverse it, so that the shoreline migrates 
landward, or transgresses.  An extreme limit of this case is one of shoreline starvation, for 
which the supply of sediment at the shoreline drops to zero and the delta goes into 
transgressive autoretreat.  A numerical model is developed to study delta evolution, including 
autoretreat, and is compared against a set of experiments.  The model also encompasses the 
migration of a bedrock-alluvial transition at the upstream end of the delta. 
 
INTRODUCTION 
 
 How do river deltas respond to changing base level, i.e. variation in the elevation of 
the ponded water into which they flow?  Water surface elevation in lakes and reservoirs is 
often subject to variation.  The ocean itself does not maintain a constant elevation.  The 
melting of continental ice sheets over a 12,000-year period commencing with the end of the 
Pleistocene ice age and ending about 8,000 years ago caused a sea level rise of about 120 m.  
Until recently sea level has been relatively constant since then, but global warming appears to 
be causing further sea level rise. 
 
 As river-borne sediment reaches standing water, a fluvial topset deposits out and an 
avalanching foreset forms subaqueously.  Under conditions of constant base level (elevation 
of standing water), the delta can be expected to prograde into the body of water.  As base 
level rises, however, it creates extra accommodation space that must be filled in order for the 
delta to prograde, i.e. for the delta shoreline to move outward (regress).  Base level rise can 
cause the shoreline to prograde less rapidly than it would with a constant base elevation.  
Indeed, base level rise can cause the shoreline to retreat landward (transgress).  Muto and 
Steel (1992) have proposed a type of transgression that they have named “autoretreat,” during 
which so much sediment is consumed in filling the topset that the sediment transport rate 
drops to zero at the shoreline.  Under this condition the foreset ceases to build, and becomes a 
relict as the shoreline retreats upstream from it. 
 
 The concept of autoretreat can be explained in the context of Figure 1.  Figure 1a 
shows the case of constant base level ξ.  Water and sediment are released at the upstream end 
of the reach over a bedrock basement with slope Sbase.  This slope is taken to be sufficiently 
high for the sediment to transported below capacity over the bedrock basement.  The effect of 
standing water downstream, however, causes sediment to deposit out and form an alluvial 
topset at slope S < Sbase corresponding to capacity sediment transport.  The alluvial bed slope 
decreases downstream as sediment deposits out.  The sediment load remaining at the 
shoreline (topset-foreset break) is supplied to an avalanching subaqueous foreset, which 
progrades outward over the basement.  As can be seen in Figure 1a, there are three moving 
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Figure 1.  a) Delta evolution with constant base level; b) delta evolution with rising 
base level 

boundaries: the bedrock-alluvial break migrates upstream; the topset-foreset break (shoreline) 
progrades downstream (regresses); and the foreset-basement break also progrades 
downstream into ever-deeper water. 
 

 In Figure 
1b the 
configuration is 
the same as that 
of Figure 1a 
except that base 
level is rising in 
time.  In the 
early stages of 

delta 
development, 

the three moving 
boundaries all 
move in the 
same directions 
as in the case of 
Figure 1a.  The 
river must fill 
the topset space 
created by rising 
sea level, 
however, so this 
causes the 

sediment 
transport to 
decrease more 

rapidly 
downstream, 

leaving less and less sediment delivery at the shoreline to supply to the foreset.  As a result, 
the shoreline progrades (regresses) ever more slowly, until it reverses and moves upstream 
(transgresses).  At some point, i.e. “autobreak,” there is no longer any sediment left at the 
shoreline to supply to the foreset.  Beyond the time of autobreak the delta goes into 
autoretreat, with the entire delta shifting upstream away from a relict foreset. 
 
 Muto and Steel (1992, 1997) have proposed that sea level rise at the end of the last 
glaciation forced many deltas into autoretreat.  Muto (2001) performed a series of simple 
laboratory experiments in order to demonstrate the concepts of autobreak and autoretreat.  
Here these experiments are augmented and explained with a mechanistic formulation and a 
predictive numerical model. 
 
EXPERIMENTS OF MUTO 
 
 Muto (2001) considered the simple 1D configuration sketched in Figure 1b.  Water 
and sediment were introduced into a narrow channel with an inerodible basement.  The 
basement had constant slope Sbase and slope angle θbase = tan-1(Sbase).  The basement slope was 
chosen to be sufficiently steep so that the sediment was transported below capacity over it, 
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with negligible sediment deposition.  The basement thus served as a simple model for 
bedrock.  Ponded water was maintained at the downstream end, and was allowed to rise at the 
constant rate ξ& .  This ponding forced the flow to decelerate and the sediment to deposit out 
on the bed, forming an alluvial topset and an avalanching foreset. 
 
 Before enumerating the experimental conditions in detail, it is useful to study Figure 
2, which shows the delta configuration at the end of one of the experiments.  It can be seen in 
the image that the shoreline first prograded (regressed), and then transgressed until autobreak 
was reached.  Beyond autobreak the topset decoupled from and migrated upstream of the 
foreset, which was left as a relict. 
 
 The experiments of Muto (2001) were conducted in a narrow tank with a length of 2 
m and a depth of 1 m.  The width of the tank was either 5 or 10 mm for the experiments.  
This configuration allowed for a simple 1D delta without complications in the transverse 
direction.  (Muto and Steel, 2001, have, however, demonstrated the concept of autoretreat in 
the case of 2D deltas with transverse flare.)  The sediment used in the experiments was a 
uniform fine quartz sand with a median and geometric mean size of 0.212 mm, a geometric 
standard deviation of 1.24 and a specific gravity near 2.65. 

 
The 29 experiments in Table 1 of Muto (2001) are considered here.  Basement slope 

angle θbase varied from 11.9° to 31.2°; the angle of repose θr of the sediment was found to be 
near 35°.  Water discharge per unit width qw took one of the two values 2.18 cm2/s and 4.36 
cm2/s.  Volume sediment feed per unit width qsf (sediment + pores) ranged from 0.297 cm2/s 
to 1.093 cm2/s.  The rate of base level rise ξ& , which was held constant for the duration of 
each experiment, varied from 0.126 mm/s to 0.387 mm/s.  As can be seen in Figure 2, a small 
amount of black carborundum powder  was occasionally added to allow visualization of the 
structure of the deposit. 
 
 Any attempt at a mechanistic numerical model of the experiments of Muto (2001) 
requires an appropriate sediment transport relation.  Although many such relations are 
available in the literature, the experiments of Muto (2001) do not fit the conditions of these 
relations, in that a) the volume concentration of sediment in the slurry fed into the flume was 

 
Figure 2.  Image from the end of one of the experiments of Muto (2001).  Flow was from left to right. 
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Figure 4.  Definition diagram. 

very high, i.e. on the order of 10 percent and b) flow depth was very low, i.e. on the order of 
1 mm.  As a result the data from the experiments were used to develop such a relation.  Muto 
(2001) recorded the bed slope angle θu at the upstream end of the alluvial deposit, where the 
transition from bedrock to alluvial conditions is made.  The bed slope Su = tan(θu) thus 
corresponds to the slope at which the sediment feed qsf is just transported at capacity by the 
flow discharge qw.  With this in mind a simple dimensionless relation of the following form 
was hypothesized for sediment transport; where qs denotes the local volume sediment 
transport rate per unit width (sediment + pores) and S denotes the local bed slope, 

 n

w

s S
q
q

α=          (1a) 

Based on the data of Muto (2001), the following values of α and n were determined by 
regression, as shown in Figure 3; 
 24.2n,3.12 ==α         (1b,c) 
The coefficient of 
correlation R2 is 
given in the figure. 
 
 Equation (1) 
is not intended to be 
of any general 
significance.  All 
that is required here 
is that it adequately 
explain sediment 
transport in the 
facility of Muto 
(2001) for the 
purposes of the 
numerical model 
described below.  In 
any application of 
the numerical 
model to field conditions (1) can be replaced by one of many equations that are known to be 
more appropriate. 
 
FORMULATION OF THE NUMERICAL MODEL 
 
 The numerical 
model described below 
is a descendant of the 
work of Swenson et al. 
(2000) and Kostic and 
Parker (2003a,b).  
These models allow for 
two moving 
boundaries; the topset-
foreset break 
(shoreline) and the 
foreset-bottomset break 
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Figure 3.  Empirical sediment transport relation for the data of Muto (2001). 
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(foreset-basement break in the present case).  The present analysis, however, allows for a 
third moving boundary, i.e. the bedrock-alluvial transition point shown in Figures 1 and 4. 
 
 The key parameters of the analysis are defined as follows and illustrated in Figure 4: 
η = alluvial bed elevation; ηbase = elevation of basement; x = streamwise distance; t = time; 
Sbase = constant slope of the basement on which the sediment deposits; Sa = constant slope of 
avalanche onto the foreset (Sa > Sb), here set equal to the tangent of the angle of repose θr of 
35°; su = streamwise position of the bedrock-alluvial break; ss = streamwise position of the 
topset-foreset break (shoreline); sb = streamwise position of the foreset-bottomset break; ηu = 
elevation of the bedrock-alluvial break; ηs = elevation of the topset-foreset break; ηb = 
elevation of the foreset-bottomset break; qs = volume sediment transport rate per unit width 
(including pores); ξ = base level elevation; and ξ&  = time rate of base level rise, here always 
positive.  Alluvial bed slope S is given as 

 
x

S
∂
η∂

−=          (2) 

 
The Exner equation of sediment conservation can be written as 

 
x
q

t
s

∂
∂

−=
∂
η∂          (3) 

(Note that qs includes both sediment and pores; in the experiments under consideration the 
porosity was near 0.5.)  The boundaries su, ss and sd are all moving boundaries that change in 
time.  The delta builds out over a set basement with elevation profile ηbase(x) and constant 
slope Sbase.  The alluvial zone of the delta begins at the the bedrock-alluvial break with an 
elevation equal to that of the basement, and ends at the elevation of the standing water.  The 
boundary conditions on (1) at the upstream end of the alluvial zone are a sediment feed 
condition; 
 sfsxs qq

u
=

=
         (4) 

where qsf denotes the feed value of qs, and a continuity condition matching the bedrock zone 
smoothly with the alluvial zone; 

)]t(s[]t),t(s[ ubaseuu η=η≡η        (5) 
Equation (5) is further reduced by taking the time derivative, resulting in the relation 

 
usubase

u tSS
1s

∂
η∂

−
−=&         (6a) 

where the dot denotes a time derivative and Su denotes the upstream alluvial bed slope; 

 
x

S,
x

S base
base

s
u

u
∂
η∂

−=
∂
η∂

−=       (6b,c) 

Because Sbase can be expected to be higher than Su, (6a) ensures that bed aggradation causes 
the bedrock-alluvial transition to move upstream. 
 
 A continuity condition similar to (5) holds at the shoreline; 

t]t),t(s[ iss ξ+ξ=η≡η &        (7) 
where ξi denotes an initial base level elevation.  Beyond the end of the alluvial zone the 
sediment forms a subaqueous foreset that progrades at slope Sa by avalanching.  The bed 
profile on the foreset is 
 )sx(S sas −−η=η         (8) 
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over the zone ss < x < sb.  The following continuity condition holds at the foreset-basement 
break; 
 )]t(s[)ss(S]t),t(s[ bbasesbasbb η=−−η=η≡η     (9) 
The above equation can be differentiated with respect to time to yield the result 

 
ss s

s
sbasea

s
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sa
b x

S,
tSS

1s
SS
SSs

∂
η∂

−=
∂
η∂

−
+

−
−

= &&     (10a,b) 

where Ss denotes the alluvial bed slope at the shoreline. 
 

If the subaqueous delta is prograding outward, an integration of (3) across the foreset 
subject to the condition that qs vanishes at the foreset-basement intersection yields the shock 
condition 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
η∂

−
−−

=
sssb

ss

sa
s tss

q
SS

1s&        (11a) 

where 
 ]t),t(s[qq ssss ≡         (11b) 
(Kostic and Parker, 2003a; Swenson et al., 2000).  In simple terms, (11a) indicates that the 
shoreline progrades outward ( 0ss >& ) in proportion to the residual sediment load qss at the 
shoreline.  In the event that the subaqueous delta does not prograde outward, (11) is replaced 
by the condition of vanishing sediment at the shoreline; 
 0]t),t(s[q ss =          (12a) 
Differentiating the above equation with respect to time, it is found that 
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ss ss

s x
q
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This condition corresponds to autoretreat of the shoreline if ∂q/∂x and ∂q/∂t are both negative 
at the shoreline. 
 

It is now possible to specify regimes for delta development. 
1. The case ( ss& > 0, bs&  > 0) corresponds to a normally prograding delta, i.e. one for 

which both the shoreline and the foreset-basement break undergo regression. 
2. The case ( ss&  < 0, bs&  > 0) corresponds to a delta with a retreating (transgressing) 

shoreline but prograding (regressing) foreset-basement break regresses.  The case of 
autobreak is reached when sb can no longer prograde due to sediment starvation. 

3. The case ( ss& < 0, bs&  = 0) corresponds to autoretreat, for which the shoreline retreats 
(transgresses) and the subaqueous foreset becomes a dormant relict. 

For cases 1 and 2 the appropriate downstream conditions at the shoreline are (7) and (11). For 
case 3 the appropriate conditions at the shoreline become (7) and (12). 
 
 The initial condition consists of a very short alluvial reach of specified constant slope, 
followed by a commensurately short foreset.  The parameters su and ss are assumed to take 
the initial values su = 0, ss = ssi, so that the initial length of the fluvial zone is ssi.  The initial 
elevation of the shoreline is taken to be ηsi = ξi = 0, and the initial bed profile of the fluvial 
zone is 
 sisifii sx0,)xs(S)x()0,x( <<−=η=η      (13a) 
where Sfi denotes the (constant) initial bed slope of the alluvial zone.  The initial profile of the 
subaqueous delta is given as 
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 bisisia sxs,)sx(S)0,x( <<−−=η       (13b) 
The initial height of the foreset is taken to be ∆ηi, so that 

 
a

i
sibi S

ss η∆
+=          (13c) 

The basement profile ηbase(x) must thus have slope Sbase, attain the elevation Sfissi at x = 0 and 
attain the elevation -∆ηi at x = sb.  This condition imposes a relation between ∆ηi and Sbase; 

 

a
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sifibase
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s)SS(

−

−
=η∆         (14) 

The basement profile, which is assumed to be invariant, is then given as 
 xSsS basesifibase −=η         (15) 
 
 The calculation proceeds as follows.  The alluvial domain is discretized into N+1 
nodes, where the last of these is located at the shoreline.  For a given bed configuration S and 
qs are computed on the alluvial zone from (1) and (2).  The condition (4) is imposed in terms 
of a ghost node.  The bed elevation one time step later is then computed from a discretized 
version of (3).  The migration of the bedrock-alluvial break is computed from (6a).  In the 
event that qss > 0, i.e. there is supply of sediment to the shoreline, the migration of the 
shoreline and foreset-basement break are computed from (11) and (10), respectively. 
 
 The aggradational nature of the problem forces qs to decline in x from the bedrock-
alluvial break su to the shoreline ss.  As the calculation proceeds, it can be expected that the 
shoreline value qss eventually drops to zero, indicating autobreak and the onset of autoretreat.  
In a discretized calculation, this is first realized in terms of a negative value of qss.  From this 
point on conditions (10) and (11) must be abandoned and replaced with (12).  The motion of 
the shoreline can be described by interpolating upstream from the current point ss at which qss 
< 0 to a new value of ss at which qss equals zero. 
 

The above problem is solved on a deforming grid using the coordinate transformation 

 tt,
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Equations (3), (4), (6a), (7), (10a), (11a) and (12a) transform to the respective forms 
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NUMERICAL IMPLEMENTATION 
 

The alluvial domain [0, 1] is discretized into N intervals each with length 

 
N
1x =∆          (24) 

The upstream and downstream elevations are η1 and ηN+1, respectively.  The load nodes are 
staggered a distance of 0.5 x∆  from the elevation nodes.  The load node 1 corresponds to a 
ghost node where the sediment feed rate qsf is specified.  Equation (17) is discretized to  

 [ ]
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1i,si,s
iuisiii ss

t
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qq
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−
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∆
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+∆−+−η=η +&&     (25) 

where t∆  denotes the time step and 
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The sediment transport rates qs,i, i = 2..N+1 are computed as functions of iŜ according to (1), 
where 
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Conditions (19), (21) and (22) are easily implemented in discretized form to 

determine us& , ss&  and bs& .  The terms ( )
0x

t
=

∂η∂  and ( )
1x

t
=

∂η∂  contained in these relations 
can be eliminated with the use of (25), so avoiding the need for iteration in a simulataneous 
solution of the evolution of bed elevation and boundary migration.  For example, it is found 
between (19) and (25) that 
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 Condition (23) can be implemented via interpolation.  It is seen from (1) that qss 
vanishes when Ss vanishes.  Suppose that at some stage in the calculation Ss ≅ 1NŜ +  barely 

becomes negative.  As long as the time step is sufficiently short NŜ  can be expected to be 
positive.  As a result the position ss,noload corresponding to vanishing load at which (23) is 
satisfied can be estimated as 
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ŜŜ
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The value ss,noload is used as the value of ss in the next time step, and ηi for the next time step 
is computed via (25) using the following estimate of ss& ; 
 

 
t

ss
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Figure 5.  Simulation of the second run of Table 1 of Muto (2001) with the 
numerical model. 

COMPUTATIONS AND COMPARISON AGAINST DATA 
 
 A sample calculation is given in Figure 5.  The calculation is based on the second 
experimental run in Table 1 of Muto (2001), for which θbase = 12.5°, ξ&  = 0.151 mm/s, qsf = 
0.904 cm2/s and qw = 4.36 cm2/s.  The shoreline is seen to first regress (prograde), then 
transgress (retrograde) and finally go into autoretreat transgression, i.e. the same pattern as 
illustrated in Figure 2. 
 
 The following parameters are chosen in order to compare the performance of the 
numerical model against all 29 runs of Table 1 of Muto (2001).  The length of the alluvial 
reach at the end of the run Lae is defined as 
 )t(s)t(sL enduendsae −=        (31) 
where tend denotes the end run time.  Let sauto and tauto denote the distance to the point at 
which autobreak occurs and the time of autobreak, respectively.  The elevation of the 
autobreak point above the bedrock basement ηab is given as 
 )s()t,s( autobaseautoautoab η−η=η       (32) 

In Figures (6), (7) and (8) 
computed values of Lae, 
tauto and ηab are compared 
against measured values 
for all the runs of Table 1 
of Muto (2001).  The 
agreement is by no means 
perfect; the discrepancy is 
likely mostly due to the 
inadequacies of the rather 
simple sediment transport 
formulation of (1).  In 
particular, the lack of a 
threshold condition for 
the transport of sediment 
in (1) likely causes an 
overprediction of both the 
time to autobreak tauto and 
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the elevation at autobreak above bedrock ηab. It is clear, however, that the numerical model 
captures the basic trends of the experiments without gross error. 
 
FUTURE DEVELOPMENTS 

 
 The above formulation is 
designed specifically to capture 
autobreak and autoretreat as described by 
the experiments of Muto (2001).  In 
these experiments the bed slope was 
high, the depth was on the order of a 
millimeter and the Froude numbers of 
the flow were either highly subcritical or 
supercritical.  These conditions allow the 
neglect of backwater effects in 
describing delta dynamics.  It is unlikely 
that such effects are negligible at field 
scale, where the Froude numbers are 
usually well into the subcritical range.  
In addition, a more realistic description 
of flow mechanics, including bed 
resistance, and sediment transport is 

necessary for field application.  Kostic and Parker (2003a,b) have implemented these features 
in describing 1D deltas.  In their analysis, however, the upstream end of the alluvial reach is 
not allowed to migrate upstream.  Finally, an extension of the present 1D model to a 2D 
configuration including transverse flare of the fan is desirable. 
 
 The part of this research conducted by the first author was supported by the 
Minnesota Sea Grant program and the National Science Foundation.  This paper represents a 
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Figure 8.  Computed versus measured values of ηab. 


