
Proceedings, XXX International Association of Hydraulic Research Congress 
 Thessaloniki, Greece, August 24-29, 2003 

 1

PERSISTENCE OF SEDIMENT LUMPS IN APPROACH TO 
EQUILIBRIUM IN SEDIMENT-RECIRCULATING FLUMES 

 
GARY PARKER1 

St. Anthony Falls Laboratory, University of Minnesota, Mississippi River at 3rd Ave. SE 
Minneapolis, MN 55414 USA 

Tel 1-612-627-4575; fax 1-612-627-4607; 1parke002@tc.umn.edu 
 

ABSTRACT 
Flumes for the study of mobile-boundary hydraulics are of two basic kinds: the sediment-
recirculating and sediment-feed flumes.  It is shown here that these two types approach 
mobile-bed equilibrium along very different paths.  In the former case this path is 
characterized by recirculating lumps of sediment that gradually decay. 
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INTRODUCTION 
There are two types of sediment transport flumes, i.e. sediment-feed and sediment-
recirculating.  In the former water and sediment are introduced upstream and allowed to flow 
out freely downstream.  In the 
latter water and sediment are 
recirculated from downstream to 
upstream with a pump.  Both 
types are schematized in Fig. 1. 
 
Flumes, as opposed to field 
rivers, eventually adjust to a 
mobile-bed equilibrium, at which 
flow and sediment transport 
become steady and uniform in 
the streamwise direction.  The 
establishment of this equilibrium 
allows the evaluation of data for 
sediment transport relations. 
 
Flow in a flume commences at 
conditions that differ from 
mobile-bed equilibrium, and then 
attains equilibrium over time.  Although both recirculating and sediment-feed flumes can 
attain the same equilibrium, at least with uniform sediment, the approach is very different.  
Unpublished anecdotal reports suggest that in recirculating flumes migrating lumps, or waves 
of sediment often persist for long periods of time before equilibrium is achieved.  Here the 
problem is pursued numerically with a generic model for both types of flumes. 
 

GENERAL GOVERNING RELATIONS 
The case considered is one for which not only the ultimate normal equilibrium, but also the 
approach to equilibrium, including the initial flow is everywhere Froude-subcritical.  The 
flume has length L and constant width B.  The streamwise coordinate x originates at the 
upstream end of the flume; t = time.  Flow and sediment transport are approximated as 1D.  
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Figure 1. Sediment-recirculating and sediment-feed flumes 
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Water discharge per unit width = qw and volume sediment transport rate per unit width = q.  
The flume contains uniform sediment of size D and density ρs. 
 
The 1D equations of water mass and momentum balance are 
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where η = bed elevation, g = acceleration of gravity, u = depth-averaged flow velocity and τb 
= boundary shear stress at the bed, given by the relation 
 2

fb uCρτ =          (2) 
where ρ = water density and Cf = dimensionless bed resistance coefficient.  The 1D Exner 
equation of sediment continuity takes the form 
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where λp denotes the porosity of the bed sediment. 
 
In the case of subcritical flow for which the condition 
 1qq w <<          (4) 
holds, and for which flow transients are not imposed externally, the above equations can be 
simplified with the quasi-steady assumption for morphodynamic evolution, according to 
which the time derivatives are dropped in (1a,b), yielding the forms 
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but retained in (3).  Further reducing (5b) with the aid of (5a) and (2) results in 
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i.e. the standard 1D backwater equation.  Here Cf is assumed to be a constant for simplicity. 
 
Sediment transport is described in terms of a generic bed material load relation of the form 
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where αL = dimensionless coefficient, NL = dimensionless exponent and q∗ = the Einstein 
number, defined as 
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In addition, τ∗ denotes the Shields number, defined as 

gDR
b

ρ
ττ =∗          (10) 

and τc
∗ denotes the critical Shields number for the onset of (significant) sediment transport.  In 

the presence of significant bedform resistance the boundary shear stress τb must be replaced 
with only that due to skin friction τbs.  This is not done here for simplicity. 
 

FLUME CONSTRAINTS 
Sediment-feed flume  In a sediment-feed flume constant water discharge qw is applied always 
and everywhere, and sediment feed rate qf is prescribed at x = 0, yielding 
 f0x

qq =
=

         (11) 
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The most common way to operate a sediment-feed flume is to adjust a tailgate so that the 
water surface elevation just upstream is maintained at a set value ξe, yielding; 
 ( ) eLx

h ξη =+
=

        (12) 
 
Recirculating flume  Here qw is again a given constant everywhere and always.  Assuming 
that a) end effects are negligible, b) the total amount of water stored in the recirculating pipe 
is constant and c) the total amount of sediment similarly stored is negligible, it follows that 
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where C1 and C2 = constants.  These equations describe water and sediment conservation. 
 
Integrating the Exner equation (3) over the length of the flume yields 
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Between (14) and (13b) 
 )L(q)0(q =          (15) 
i.e. the boundary condition on sediment transport must be cyclic. 
 
In fact the discharge constraint in a recirculating flume is not one of specified discharge, but 
rather one of specified pump head-discharge relation.  An analysis of this case will be 
presented elsewhere; the results usually differ little from the case of specified discharge. 
 

NORMAL OR EQUILIBRIUM STATE 
At mobile-bed normal flow, water mass and momentum balance relations (5a,b) reduce to 
 nnbnnnw Sgh,uhq ρτ ==        (16a,b) 
where S = bed slope and the subscript “n” = normal flow.  In addition, (2) and (7) apply to 
normal equilibrium as well as deviation from it.  Reducing (16b) and (7) with  (2) and (5a),
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Now if sediment size D and submerged specific gravity R are specified along with αL, NL and 
Cf, (17a,b) define two constraints on the four parameters qw, qn, hn and Sn.  That is, if any two 
of these parameters are specified then the other two can be computed. 
 
In a sediment-feed flume the specified parameters are qw and qn, where 
 fn qq =          (18) 
No matter what the initial conditions, the flow must eventually adjust to attain the values of hn 
and Sn computed from the specified values qw and qn and (17a,b).  In a recirculating system 
the specified parameters are qw and hn, where hn is the spatially constant depth satisfying the 
integral constraint (13a).  Again, no matter what the initial conditions, the flow must 
eventually adjust to attain the values of qn and Sn computed from the specified values qw and 
hn and (17a,b). 
 
Note that the bed slope at normal equilibrium Sn can be specified independently of the mean 
bed elevation η  at that equilibrium, where 
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In a sediment-feed flume the constraint (12) of specified downstream water surface elevation 
determines the equilibrium value of η .  In a recirculating flume the corresponding constraint 
is integral sediment conservation, i.e. (13b). 
 

NON-DIMENSIONALIZATION AND SOLUTION SCHEME 
The following recipe is used to define hatted dimensionless parameters;  
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q
LS)1(tx̂Lxq̂qqĥhh
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Note that both ĥ  and q̂  → 1 as the flow converges to normal flow.  Before making bed 
elevation dimensionless it is of value to decompose it into a flume-averaged component η  
defined by (19) and a deviation from this average ηd; 
 dηηη +=          (21) 
Note that according to (19) and (21) the deviatoric bed elevation ηd must integrate to zero; 
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The parameters η  and ηd are made dimensionless as follows; 
)t̂,x̂(ˆLS)t̂(ˆh dndan ηηηη ==       (23a,b) 

in which case (22) takes the dimensionless form 
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Between (21) and (23) it is seen that 
 afdn ˆˆˆ,ˆLS ηαηηηη +==        (24a,b) 
where 

)LS(h nnf =α         (25) 
denotes a dimensionless “flume number” that plays an important role in the morphodynamic 
evolution toward equilibrium in both the sediment-feed and recirculating cases. 
 
With the normalizations (20) and (23) and the relation (17a), (6) takes the dimensionless form  
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where Frn = Froude number at normal flow, here assumed to be less than unity. 
 
A scaled bed slope Ŝ  can be defined as 
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Between (20c), (21), (23b) and (28a) it can be shown that 
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That is, the scaled slope Ŝ  is equal to unity when normal conditions are achieved.  Under the 
conditions of normal flow, (26) reduces with the aid of (28a) to 
 1Ŝn =           (29) 
Integrating (28a) with the aid of (29) and (23c), the deviatoric bed elevation profile at normal 
conditions dnη̂  is found to be 
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The dimensionless form of the sediment transport relation (7) reduces with (2), (5c), (10) and 
(20) to 
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where 
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Note here that τn
∗ is the Shields number associated with normal equilibrium.  According to 

(31) q̂  → 1 as ĥ  → 1, i.e. as mobile-bed equilibrium is approached. 
 
Decomposing the bed elevation according to (24), the dimensionless form of the Exner 
equation of sediment continuity is found to be 
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The first of the above pair of equations describes the evolution of mean bed elevation toward 
equilibrium, and the second describes the corresponding evolution of deviatoric bed elevation. 
 
The part of the dimensionless formulation peculiar to a recirculating flume is considered 
below.  The constraint (13a) and (15) become 
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in which case (33a,b) reduce to 
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A convenient datum for elevation in the case of a recirculating flume is the initial mean bed 
elevation.  Because this value never changes in time according to (36a), a solution for 
deviatoric bed elevation completely describes the evolution toward equilibrium. 
 
The part of the dimensionless formulation peculiar to a sediment-feed flume is considered 
below.  The constraint (11) combined with the condition that the normal sediment transport 
rate qn must be equal to the feed rate qf in a sediment feed flume leads to the condition 
 1q̂

0x̂
=

=
         (37) 

Before making (12) dimensionless, one must define a convenient elevation datum in the 
sediment-feed case, here chosen to be the average bed elevation nη  at normal conditions.  The 
downstream water surface elevation ξe relative to this datum is given as 

 nne hxS
2
1

+−=ξ         (38) 

as shown in Fig. 2.  Since the value of ξe of (38) must be maintained at all flows, and not just 
normal flows, the constraint (12) reduces with the aid of (20a), (23) and (38) to 
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Equations (33a,b) reduce to the following forms for the case of sediment feed; 
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The above relations highlight an 
interesting difference in the way that 
recirculating and sediment-feed flumes 
approach equilibrium.  Since the mean bed 
elevation of a recirculating flume is fixed, 
the evolution is entirely “rotational” and 
expressed solely in terms of dη̂   In the 
sediment feed case “rotation” is 
accompanied by vertical “translation” of 
the mean bed elevation aη̂  as the bed 
adjusts to match the imposed downstream water surface elevation. 
 
The dimensionless parameters αf, Frn and τr

∗ must be known in order to solve for the 
evolution toward equilibrium for either type of flume.  Suppose that at time t̂  the bed 
elevation profile is known in terms of )t̂(ˆ aη  and )t̂,x̂(ˆ dη .  If the downstream value of depth 

1x̂
ĥ

=
 is also known, (26) can be integrated upstream for a solution for ĥ .  Once ĥ  is known 

q̂  can be obtained from (31), and the bed can be allowed to evolve according to (33). 
 
In the case of a sediment-feed flume, the evaluation of 

1x̂
ĥ

=
 is simple and direct; it is 

specified by (39).  The appropriate relations for sediment continuity for this case are (40).   In 
a recirculating flume, however, the correct value of 

1x̂
ĥ

=
 is the one that yields a solution of 

(26) for ĥ  that in turn satisfies the integral constraint (34).  This requires an iterative approach 
outlined below.  The appropriate relation for sediment continuity is (36b). 
 

SHOOTING TECHNIQUE FOR RECIRCULATING FLUMES 
A shooting technique allows an iterative solution for ĥ  in the case of a recirculating flume.  
The following abbreviation is introduced; 
 

1x̂e ĥĥ
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For any given bed profile and any prescribed value of eĥ , (26) can be solved to yield 

 )ĥ,x̂(ĥĥ e=          (42) 
Among these solutions, however, there is only one that satisfies (34).  To find it iteratively 
from any first guess, it is useful to define the variational parameter H; 
 eĥĥH ∂∂=          (43) 

The equation for H is found by taking the derivative of both sides of (26) in eĥ ; the associated 

b.c. is found by taking the derivative of (41) in eĥ , so that the problem becomes 

ξe

0.5 SnL
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Figure 2.  Definition diagram 
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ĥ1

ĥ3
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The condition (34) becomes 
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or invoking a Newton-Raphson scheme, 
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The above problem can be solved iteratively for eĥ , and thus ĥ . 
 

INITIAL CONDITION 
The initial condition is specified in terms of the initial bed profile; 
 )x(I0t
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or in dimensionless terms 
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A simple and useful example of an initial condition is a bed with some initial slope SI that is 
constant in space.  Scaled initial slope IŜ  is then given according to (28b) as 
 nII SSŜ =          (49) 
It further follows from (23c) and (28) that 
 )x̂5.0(Ŝˆ IdI −=η         (50) 

Thus if IŜ  = 0.5 the initial bed slope is spatially constant and = half the normal bed slope. 
 
In a recirculating flume with the elevation datum equal to the mean initial bed elevation, aIη̂  = 

aη̂  = 0.  In a sediment-feed flume, the value of aIη̂  must be specified as well.  Recall that the 
datum for the sediment-feed case has been chosen to be equal to the mean bed elevation at 
normal equilibrium, implying that anη̂  vanishes.  Even if aIη̂  is also chosen to be vanishing, 

however, when IŜ  is not equal to nŜ  the parameter aη̂  may first deviate from zero before 
again approaching zero as equilibrium is approached  
 

NUMERICAL IMPLEMENTATION 
Space limits preclude the details of numerical implementation.  The solution domain 1x̂0 ≤≤  
is divided into N – 1 intervals bounded by N nodes, so that x̂∆  = 1/(N-1).  In addition, a ghost 
node is placed a distance x̂∆  upstream of the origin.  The ghost node is used only for 
implementing the Exner equation(s) of sediment continuity.  Equation (26) for a sediment 
feed flume, or (44a,c) for a recirculating flume are solved by stepping upstream from 1x̂ =  
using a predictor-corrector scheme.  In the case of a recirculating flume the solution to (44a,c) 
is implemented iteratively.  Once ĥ  is known at all nodes i = 1 to N q̂  can be computed at 
these nodes from (31).  A pure upwinding scheme, according to which 
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is used for spatial derivatives; a central difference scheme yielded spurious fluctuations.  The 
program implementing the solution is written in Visual Basic for Applications. 

 
RESULTS 

Space limitations preclude a thorough search of parameter space, so two characteristic 
examples are given here, one each for a sediment-recirculating flume (Fig. 3) and a sediment-
feed flume (Fig. 4).  The following values were used in the computations; Frn = 0.5, τr

∗ = 3, αf 
= 10, 5.0ŜI = , NL = 1.5, N = 50, 0025.0t̂ =∆ , aIη̂  = 0 (sediment-feed case only).  Let topŜ  
denote the normalized bed slope based on the two nodes closest to the upstream end of the 
flume and botŜ  denote the corresponding value based on the two nodes closest to the 

downstream end.  The time development of ( topbot Ŝ,Ŝ ) is plotted in the figures.  Both 

calculations begin at ( topbot Ŝ,Ŝ ) = (0.5, 0.5) (initial bed slope = half of equilibrium slope) and 

end at ( topbot Ŝ,Ŝ ) = (1.0, 1.0) (equilibrium).  As time progresses, it is seen in Fig. 3 that the 
phase diagram spirals toward equilibrium, indicating the presence of recirculating sediment 
lumps that are damped in time.  The dimensionless time required to reach an appropriate 
measure of equilibrium (a slope at every adjacent node pair differing by less than one percent 
from the equilibrium value) in the case of Fig. 3 is 95.9t̂ = .  No such spiraling is seen in Fig. 
4, where the time to reach the same measure of equilibrium is much shorter, i.e. 90.3t̂ = . 

 
CONCLUSION 

The results presented here show that sediment-feed flumes approach equilibrium along a 
markedly different path than sediment-recirculating flumes.  The latter case is characterized 
by recirculating lumps of sediment that eventually decay.  The cause of the lumps relates to 
the nature of recirculation, wherein the sediment supplied to the upstream end of the flume 
has nothing to do with the hydraulic conditions there, instead being determined by those at a 
distant point downstream.  This disjoint is expressed in terms of recirculating lumps of 
sediment that decay slowly in time. 
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botŜ
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