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ABSTRACT 
 
The depositional behavior of sand and mud in a reservoir is considered. Here the problem is 
simplified to sand-bed rivers that predominantly transport two grain sizes; sand as bed 
material load and mud as wash load. A sandy deltaic deposit is formed where a river reaches 
a reservoir. If the wash load is high enough to render the river water heavier than the 
reservoir water, the mud-laden river flow plunges to form a turbidity current. This mud is 
then deposited as a bottomset.  The confinement of the reservoir can force the turbidity 
current to undergo an internal hydraulic jump, so forming an internal muddy pond 
downstream.  The elevation of the top of the muddy pond may be below or above any 
outflow point.  In the former case the trap efficiency of the reservoir is 100 percent; in the 
latter case it is less than 100 percent.  The authors have previously developed and tested an 
integral, physically based, moving boundary model that captures the evolution of the river 
delta deposit, as well as the muddy deposit created by a ponded turbidity current.  Here the 
model is applied to a hypothetical reservoir at field scale.  The evolution of the location and 
elevation of the submerged hydraulic jump location is studied in this paper.  
 
 
INTRODUCTION 
 
All rivers transport sediment as well as water.  Dam construction impacts the transport of 
both water and sediment.  Because the great majority of rivers transport much more water 
than sediment a much longer time is required to fill a reservoir with sediment than with 
water.  As a result the gradual accumulation of sediment in reservoirs often receives less 
attention that it merits.  Sediment deposition in a reservoir reduces its storage capacity (Graf 
1984; Fan and Morris 1992), so limiting the effective life of the dam as well as the benefits it 
provides.  Sediment accumulation has been estimated to decrease worldwide reservoir storage 
by 1% per year (Mahmood 1987).  
 
Sedimentation processes in reservoirs and lakes have been reported by many authors, i.e. 
Mahmood (1987), Hotchkiss and Parker (1991), Fan and Morris (1992), Sloff (1997), De 
Cesare et al. (2001), among many others. In recent years, experimental and numerical 
research on these topics has been actively pursued at Saint Anthony Falls Laboratory (SAFL), 
University of Minnesota.  For instance, Kostic and Parker (2003a), (2003b) have developed a 
moving boundary model of deltaic sedimentation in lakes and reservoirs that captures the co-
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evolution of the river-delta morphology and the associated deposit. Toniolo et al. (submitted 
(a)), (submitted (b)) have developed and tested an integral, physically based, moving 
boundary model that captures the evolution of the river-delta deposit, as well as the muddy 
lake deposit. The numerical model uses a shock-capturing technique that captures the 
location of any internal hydraulic jump dictated by the dam. This model was tested 
successfully against an experiment. 
 
A field-scale simulation  of the interaction between the prograding delta and the location of 
the internal hydraulic jump is presented in this paper.  
 
 
FORMULATION 
 
The analysis presented here represents a simplification of processes in reservoirs.  A standing 
body of water is created in a river of constant width by means of a vertical barrier (dam).  The 
river flow upstream of the barrier is Froude-subcritical and the barrier creates an M1 
backwater curve. Sediments are characterized in terms of two grain sizes, i.e. size Ds in the 
sand range and size Dm in the mud (silt-clay) range.  The sand (but no mud) deposits entirely 
in the topset and foreset of Figure 1.  The mud is carried through the fluvial zone as wash 
load.  The muddy water plunges in the vicinity of the foreset to form a purely depositional 
turbidity current that emplaces a bottomset composed purely of mud.  Because of the 
assumption of a constant width the river flow upstream of the foreset is treated using the 1D 
St. Venant equations of shallow water flow, and the turbidity current downstream of the 
foreset is treated using the corresponding 1D layer-averaged relations for a turbidity current.   
 
 The 1D formulation of Toniolo et al. (submitted (a)) is briefly reviewed here.  A definition 
diagram is given in Figure 1, in which s is a streamwise coordinate, s = 0 denotes the origin, 
ss denotes the streamwise position of the topset-foreset break, sp denotes the plunge point, sb 
denotes the position of the foreset-bottomset break, and sd denotes the position of the dam. 
Constant water discharge per unit width qw, sand discharge per unit width qso and mud 
discharge per unit width qmo are supplied at s = 0.   
 
The governing equations are transformed to hatted moving-boundary coordinates in order to 
capture the progradation of the delta.  The fluvial zone extends from s = 0 to s = ss, or 

1ŝ0 f << .  The equations to be solved over this zone are 
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where ηf denotes bed elevation, Hf denotes flow depth, Sf denotes bed slope, Sfr denotes 
friction slope which is in turn related to a bed friction coefficient Cfa, Fr denotes the Froude 
number of open-channel flow, ft̂  denotes time on the fluvial zone, qs denotes the volume 
transport of sand per unit width and λps denotes the porosity of fluvial deposits of sand.  Here 
Cfa is specified as the ratio τb/(ρU2) where τb  denotes boundary shear stress at the bed, ρ 
denotes water density and U denotes depth-averaged flow velocity. A generalized sediment 
transport relation of the following form is assumed for the bed-material transport of sand; 
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where α  and  n are specified 
parameters, q∗ and τ∗ are defined 
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and Rs denotes the submerged 
specific gravity of sand (about 
1.65 for natural quartz) and g = 
the acceleration of gravity. 

 
Figure 1. Sketch of geometric configuration considered in  
the formulation. The flow is from left to right. 
 
In addition, the parameter τc

∗ in Eq. (3a) denotes a critical Shields stress for the onset of sand 
motion.  The total bed material load relation of Engelund and Hansen (1972) used here is 
realized for the choices 
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The boundary conditions on Eqs. (1) and (2) are 
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where qso denotes a specified constant sediment feed rate, ξ denotes the constant water 
surface elevation of the reservoir and ηs denotes the bed elevation at the topset-foreset break. 
Progradation of the topset-foreset break is specified in terms of a shock condition; 
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where ss&  denotes the speed of migration of the topset-foreset break, Sa denotes the specified 
foreset slope and qss denotes the value of qs at the topset-foreset break.  Progradation of the 
foreset-bottomset break is specified in terms of a continuity condition; 
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where bs&  denotes the speed of migration of the foreset-bottomset break, tŝ  denotes a moving-
boundary coordinate along the bottomset such that 0ŝt =  denotes the position of the foreset-
bottomset break, 1ŝt =  denotes the position of the dam, tt̂  denotes time on the turbidity 
current zone and ηt denotes bottomset bed elevation. 
 
Plunging occurs on the face of the foreset, and is computed using the method of Parker and 
Toniolo (submitted), which is in turn based on that of Akiyama and Stefan (1984).  The 
turbidity current dynamics are described by the relations 
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where Ht, Ut and Ct  denotes turbidity current thickness, velocity and volume concentration of 
sediment, vsm denotes the fall velocity of the mud calculated from the relation of Dietrich 
(1982), ew is a coefficient of entrainment of ambient water into the turbidity current, a 
relation for which given in Parker et al. (1986), ro is an order-one coefficient here set to unity, 
Rm denotes the submerged specific gravity of the mud, Cfs denotes a bottom friction 
coefficient of the turbidity current and δ is equal to 1 in the ponded zone and 0 otherwise.  
More specifically, the term δvsm in Eq. (8) plays the essential role of describing detrainment 
of water across a settling interface, and thus serves to allow the possibility for the top of the 
ponded turbidity current to equilibrate at a point below any point of outflow from the 
reservoir. 
 
For dilute turbidity currents, the characteristic time for significant migration of the foreset-
bottomset break is much larger than the setup time for quasi-steady flow with an internal 
hydraulic jump. Equivalently, this implies that 1<<tb Us& , i.e., the speed of a slow-moving 
ponded turbidity current is still much faster than the speed of delta progradation. As a result, 
Eqs. (8,9,10) can be accurately approximated to 
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The upstream boundary conditions on Eqs. (11), (12) and (13) take the form 
 dstdstdst CCUUHH

ppp
===      (14,15,16) 

where Hd, Ud and Cd denote the thickness, layer-averagedvelocity and volume concentration 
of the turbidity current just downstream of plunging.  The values of Hd Ud and Cd are 
computed using the formulation of plunging of Parker and Toniolo (submitted), which 
requires the specification of a single mixing coefficient γ, where 
 wdd q)1(HU γ+=         (17) 
This parameter characterizes the degree to which plunging entrains ambient clear water from 
the upper layers of the reservoir into the turbid underflow. 
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The turbidity current is allowed to run down the foreset without depositing sediment until it 
reaches the foreset-bottomset break, at which 0ˆ =ts .  Beyond this point the bed is allowed to 
evolve according to the relation 
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which describes a purely depositional turbidity current.  In the above relation, λpm denotes 
the porosity of the mud deposit. 
 
The nature of the boundary condition at the dam changes depending on whether the elevation 
of the settling interface in the ponded zone, ξmp, is below or above an outflow sill, as 
described in Figure 1.  In the present work, however, the condition of no overflow is 
considered. The downstream boundary condition at the dam for this case is simply 
 0

1ˆ ==
== td stsst UU         (19) 

 
 
IMPLEMENTATION OF THE NUMERICAL MODEL 
 
A detailed description of the numerical implementation of the above formulation is given in 
Toniolo et al. (submitted (b)). However, a summary of the solution technique is given here.  
The upstream values of the volume transport rates of sand and mud per unit width, qso and 
qmo, respectively are specified, along with the water surface elevation ξ, the slope Sa of the 
avalanching foreset, the water discharge qw, distance to the dam barrier sd and the parameters 
Ds, Dm, Rs, Rm, λps, λpm, Cfa, Cfs and ro.  At any given time the bed profile, and thus the values 
(ηs, ss) and (ηb, sb) are known.  Eq. (1) is then solved numerically upstream subject to Eq. 
(5b) to determine the depth profile on the fluvial zone.  The depth profile combined with Eqs. 
(3b), (3c) allows an evaluation of the sand transport rate qs everywhere on the fluvial zone.  
The speed of migration of the topset-foreset break ss&  is then evaluated from Eq. (4).  The bed 
profile on the fluvial zone one time step later is then obtained from a numerical solution of 
Eq. (2) subject to Eq. (5a).  The time step used to discretize Eq. (2) is here called a 
morphologic time step, as it is the one that characterizes bed change in time.  In principle the 
above method would also use a much shorter hydraulic time step to compute the time 
progress of the flow toward quasi-steady conditions, but the quasi-steady assumption obviates 
this. 
 

The turbidity current zone is solved rather differently, using the same morphologic 
time step as that used in the fluvial region, as well as a much shorter hydraulic time step. The 
temporal terms in Eqs. (11,12,13) are used as a way of iterating in hydraulic time toward a 
quasi-steady solution that nevertheless automatically captures any internal hydraulic jump. 
The MacCormack scheme  (MacCormack 1969; Tannehill et al. 1997) is used to solve the 
Eqs. in this submodel. This scheme is second order accurate in both space and time. Details 
of the numerical implementation of this submodel are presented in Toniolo et al. (submitted 
(c)).  

 
Consider a case for which the turbidity current is suddenly released from the plunge point at 
time t = 0.  The turbidity current will run down the plunge point, across the bottomset and up 
the barrier of the dam.  It will then reflect and send a bore migrating upstream, which will 
eventually stabilize as an internal hydraulic jump.  Once this relatively short setup period is 
passed, the resulting flow is quasi-steady, in that the bed and flow change only in response to 
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the slow process of sediment deposition.  Implicit in the above arguments are two time scales, 
one hydraulic and one morphologic, that differ greatly from each other. 
 
Thus at any given time step an appropriate (but rather arbitrary) initial condition is applied 
for the turbidity current calculation, and Eqs. (11,12,13) are solved according to the upstream 
boundary conditions of (14,15,16). Eq. (19) defines the downstream boundary condition.  The 
calculation is continued in hydraulic time until a quasi-steady condition is reached.  Only this 
quasi-steady solution is used in evaluating the bed change.  In particular, it is used in Eqs. 
(18) and (5) to evaluate the change in bottomset bed elevation and the migration speed bs&  of 
the foreset-bottomset break. 
 
 
FIELD-SCALE NUMERICAL SIMULATION 
 
Toniolo et at. (submitted (b)) successfully tested the numerical model against a laboratory 
experiment conducted at SAFL. In the present work, the numerical model is applied to a 
hypothetical reservoir at field scale. A condition of no overflow is fixed at the downstream 
end. The geometrical conditions are summarized in Figure 1. 
 

More specifically, 
they are as follows: 
the length sd = 7000 
m and the initial 
length of fluvial 
zone ssi = 500 m. 
The initial topset 
and bottomset bed 
slopes Sfi and Sti are 
0.003 and 0.014 
respectively. The 
initial elevations of 
the top and bottom 
of the foreset ηs and 
ηb are 200 m and 
110 m, respectively. 
The foreset slope Sa 
is set equal to 0.2  
(11.3°). 

 
Figure 2.  Bed elevation profile in function of time.  The turbidity current interface after 100 
days is also included in the graph.  The internal hydraulic jump and ponded turbidity current 
can be clearly seen in the plot. 
 
The water surface elevation in the reservoir is fixed at 203 m. Neither orifices nor gates are 
considered at the downstream end. The specific water discharge qw of the river is set to 2.2 
m2/s. The mixing coefficient γ at the plunging point is 0.9.  The dimensionless Chezy 
resistance coefficients 2/1

faC− and 2/1
fsC −  for the subaerial (topset) and subaqueous (bottomset) 

regimes are set equal to 12 and 30 respectively.  The simulation uses sand with Ds= 400 µm, 
Rs= 1.65, and λps= 0.4 and mud with Ds= 50 µm, Rs= 1.65, and λpm= 0.55.  The input rates 
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qso and qmo of sand and mud are 7.25x10-4 m2/s and 3.00x10-3 m2/s, respectively. The ratio 
between sand and total input rate qso/ (qso + qmo)  is 0.195.  
 

 
 
The total run time 
is 100 days of 
continuous flood 
flow, which easily 
translates into 
years or decades 
of real time. The 
geomorphic time 
step, i.e. that used 
in Eqs. (2) and 
(13), is taken to be 
2 h. The fluvial 
and subaqueous 
regions are 
divided into 94 
nodes each. 

 
Figure 3. Foreset-bottomset interface evolution.  The competition between the sand deposit 
on the foreset and the mud deposit from the turbidity current is clearly shown in the graph. 
The dashed arrow denotes the progress of time.  The solid arrow indicates the interface 
position at which the jump moves downstream.   
 
Figure 2 illustrates the evolution of the bed profile in time.  The final profile of the turbidity 
current interface showing the submerged hydraulic jump and the ponded zone is included.  
The gradual filling of the reservoir as the foreset progrades and the bottomset builds up is 
clearly documented. 
 
Figure 3 shows the evolution in time of the foreset-bottomset interface. Each dot in the graph 
represents a time interval of 4 days. The foreset-bottomset interface moves upstream until the 
bed sediment from the river builds a prograding delta with sufficient velocity that moves the 
interface downstream. Figure 4 documents the same deposition pattern along the Colorado 
River through Lake Mead, 1935-1948.  
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Figure 4. Deposition pattern along the Colorado River through Lake Mead, 1935 – 1948. 
From Graf (1984), based on an original in Grover and Howard (1937). The flow is from right 
to left.  
 
Figures 5 and 6 show the variation of jump location in time and the bed elevation where the 
jump was located, respectively.  According to Figure 5, the hydraulic jump was located 
between 1800 and 2000 m from the origin. Figure 5 indicates the jump moved upstream 
during an initial period of 60 days, with a sudden displacement after 28 days. This tendency  

Figure 5.  Submerged hydraulic jump location.        Figure 6. Bed elevation at jump location. 
 
was subsequently reversed at 60 days, with a sudden downstream movement of 
approximately 200 m (solid arrow in Figure 3). Figure 6 shows the bed elevation associated 
with these displacements. The interaction between water entrainment, sediment deposition in 
the supercritical region and water detrainment in the ponded zone apparently caused these 
changes in the position of the submerged hydraulic jump.  
 
 
CONCLUSIONS 
 
The numerical model presented in Toniolo et al. (submitted (a), submitted (b)) represents an 
important step toward a numerical model capable of predicting reservoir trap efficiency.  It 
captures the sand-mud evolution in deltas. It is the first model that can track both turbidity 
current regimes in the reservoir, i.e. supercritical and subcritical. Also, it captures the 

Jump location 

1500

1600

1700

1800

1900

2000

2100

0 20 40 60 80 100 120

time (days)

di
st

an
ce

  (
m

)

Bed elevation at jump location

96

98

100

102

104

106

108

1800 1850 1900 1950 2000 2050

distance (m)

el
ev

at
io

n 
(m

)



Proceedings, IAHR Symposium on River, Coastal and Estuarine Morphodynamics, 
Barcelona, Spain, 2003, 457-468  

mechanics of an important phenomenon in reservoir sedimentation: formation of an internal 
muddy pond downstream of an internal hydraulic jump. 
  
A condition of no overflow at the downstream end of the reservoir (sediment trap efficiency 
of 100 percent) was used here to show the time variation of the jump location.  The model is 
easily amended to describe the rise of the interface of the muddy pond to a point at which 
sediment starts escaping from the reservoir (Toniolo et al., submitted (b)). 
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