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ABSTRACT 

These lecture notes provide an introduction into the mechanics of flow-sediment 
interaction in rivers and the ocean, as well as a description of the resulting morphologies.  
In the first chapter the 1- and 2-dimensional de St. Venant equations of shallow water 
flow are derived from the Navier-Stokes equations and the boundary layer 
approximations.  In the second chapter relations are developed for the description of 
sediment mass balance via the Exner equation of sediment continuity.  In the third 
chapter a description is given of some simple relations for bedload and suspended load 
transport.  In the fourth chapter the mechanisms for dunes, antidunes, alternate bars, 
meandering and the formation of large scale morphology are presented.  The fifth chapter 
provides an introduction to oceanic turbidity currents.  The sixth chapter considers 
applications of the above material to applied problems. 
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CHAPTER 1 
DERIVATION OF THE SHALLOW WATER EQUATIONS 
 
 
 
1.1 INTRODUCTION 
 
The interaction of flow and sediment transport in rivers creates a variety of interesting 
phenomena and morphologies, including dunes, bars, meandering, alluvial fans, 
submarine channels etc.  In most cases of interest the flow can be expected to be fully 
turbulent.  The tools used to model the flow and sediment transport depend upon the 
scales of interest.  At the scale of dunes and ripples, the mechanics of sediment transport 
must be coupled with the Reynolds-averaged Navier Stokes equations (appropriately 
closed for turbulence) to describe the phenomenon.  At larger scales, however, the 
shallow-water equations are quite adequate to model the flow.  Since such scales are 
commonly the focus of sediment transport and river mechanics, a derivation of the de St. 
Venant equations from first principles is provided here. 
 
1.2 REYNOLDS EQUATIONS 
 
The fluid in question in rivers and the ocean is water.  In this chapter the water is 
assumed to be incompressible and of constant density.  Let ui denote the instantaneous 
velocity vector of the water flow and p denote the instantaneous pressure.  The Navier-
Stokes equations for an incompressible fluid can be written as 
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In the above relation, t denotes time xi denotes the spatial vector, ρ denotes the density of 
the fluid, ν denotes the kinematic viscosity of the fluid and gi denotes the vector of 
gravitational acceleration, given by 
 
 vii ngg −=          (1.2) 
 
where g denotes the magnitude of gravitational acceleration and nvi is a unit upward 
vertical vector.  The relation for water continuity is 
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The flow may be averaged over the turbulence using a standard Reynolds decomposition: 
 
 pppuuu iii ′+=′+=        (1.4) 
 
where the overbar denotes the averaging and the prime denotes fluctuations about the 
average.  Averaging results in the following Reynolds forms for water momentum and 
mass conservation: 
 

 i
j

Rij

j

vij

ij

i
j

i g
x

1
x

1
x
p1

x
uu

t
u

+
∂

τ∂

ρ
+

∂

τ∂

ρ
+

∂
∂

ρ
−=

∂
∂

+
∂
∂     (1.5) 

 

 0
x
u

i

i =
∂
∂          (1.6) 

 
where 
 

 jiRij
i

j

j

i
vij uu)

x
u

x
u( ′′ρ−=τ

∂

∂
+

∂
∂

ρν=τ      (1.7) 

 
denote the average viscous stress tensor and the Reynolds stress tensor due to turbulence, 
respectively. 
 
 
1.3 APPLICATION TO A RIVER 
 
The above equations are applied to free-surface flow in a river.  For simplicity the flow is 
considered two-dimensional, with a streamwise and normal coordinate.  Boundary layer 
coordinates are used, so that x denotes the streamwise direction along the bottom 
boundary of the river and z denotes an upward coordinate normal to the bottom of the 
river.  The river bottom has been assumed to be averaged over small-scale roughness 
elements such as ripples and dunes.  The flow is considered to be fully turbulent except 
possibly for a thin viscous layer near the bed.  In the great majority of cases the 
turbulence can be considered to be hydraulically rough, so even the viscous layer can be 
neglected. 
 
The geometry is illustrated in the figure below.  The flow depth H(x, t) is measured 
normal to the bed.  Vertical bed elevation is denoted by η(x,t); bed slope S is given by 
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For most rivers S is quite small, varying from 1x10-5 to 4x10-2.  Under these conditions 
vectorial gravitational acceleration is accurately approximated by 
 

)1,S(ggi −=         (1.9) 
 
where the components of the vector are in the x and z directions, in that order. 
 

Figure 1.1 Definition diagram. 
 
The key assumption in the boundary layer, or slender flow approximations is that the 
characteristic length Lx for change in the streamwise direction should be large compared 
to the depth of flow H; 
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That is, the flow must change much more slowly in the streamwise direction than in the 
upward normal direction.  For example, consider the flow influenced by a dam 
downstream.  Velocity changes from 0 at z = 0 to its maximum value at z = H, but one 
must typically go upstream many tens of kilometers to see the slow velocity induced by 
the dam revert to its equilibrium value upstream.  In general the slender flow 
approximation is excellent for application to all but the smallest scales of interest in 
rivers. 
 
Let )w,u(  denote the two-dimensional average velocity vector in the (x, z) direction. 
The Reynolds equations thus reduce to 
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where 
 
 wuwwuu 31R13R33R11R ′′ρ−=τ=τ′′ρ−=τ′′ρ−=τ    (1.14) 
 
It can be seen from Figure 1.1 that the coordinate system is intrinsically curvilinear in 
that it is attached to a boundary that can have changing shape in the streamwise direction.  
The slender flow approximation (1.10) can be used, however, to show that the metric 
terms associated with this system can be approximated as unity at lowest order, allowing 
the coordinate system to be treated as Cartesian. 
 
 
1.4 THE SLENDER FLOW APPROXIMATIONS 
 
Let Uc denote a characteristic velocity in the streamwise direction and Wc denote a 
characteristic velocity in the upward normal direction.  The equation of continuity 
(1.13)can be scaled as 
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yielding the scale result 
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Thus Wc/Uc ~ H/Lx << 1.  In scaling the momentum equations, it is useful to introduce 
the shear velocity ∗u , which is related to the streamwise component of the shear stress 
evaluated at the bed τb as follows; 
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Turbulence being generally well correlated for flows of boundary layer type, the 
following scale estimates can be made; 
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Again on empirical grounds, the following condition typically holds for turbulent flows 
of boundary layer type; 
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The momentum balance that would prevail in the upward normal direction in (1.12) in 
the absence of flow would be the relation for hydrostatic pressure hp ; 
 

 0g
z

p1 h =−
∂
∂

ρ
−        (1.18) 

 
This equation can be integrated with the condition of vanishing gage pressure at the water 
surface to yield the result 
 
 )zH(gph −ρ=        (1.19) 
 
where hp  corresponds to the deviation from local atmospheric pressure.  For a general 
flow the pressure p  can be decomposed into hydrostatic and dynamic components; 
 
 dh ppp +=         (1.20) 
 
The following scale estimates are introduced for time t and dynamic pressure dp ; 
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Between (1.15), (1.18), (1.20) and (1.21) the equation of upward normal momentum 
balance can be reduced and scaled as follows; 
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Dividing the scale estimates by Uc

2/H, it is found that 
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In light of the slender flow approximation (1.10) and the scale relation for boundary layer 
turbulence (1.17), the above scalings approximate the upward normal momentum 
equation to 
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In light of the fact that dynamic pressure should vanish at the water surface in the absence 
of wind stresses, it is seen that the dp  must be approximated as vanishing everywhere, so 
that p  can be approximated by the hydrostatic value hp  given by (1.19). 
 
Rephrasing, the essential result of the application of the boundary layer approximations 
to the equation of momentum balance in the upward normal direction is that the pressure 
field can everywhere be approximated as hydrostatic. 
 
With this in mind, (1.19) can be substituted into the equation of streamwise momentum 
balance, which can then be subjected to the boundary layer approximations; 
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Dividing through by Uc

2/Lx, the scale estimates reduce to 
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In general the combination gH/Uc

2, which corresponds to the inverse of the square of the 
Froude number of the flow, is an order one quantity for river flow, as is the combinatioin 
S (Lx/H).  In fact the gravitational term involving the slope S must be approximated as 
o(1) as it drives the flow.  One of the Reynolds stress terms is clearly negligible.  Were 
both of them to be negligible, it would be necessary to drop the effect of shear stress 
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completely from the problem, and in so make steady, uniform flows impossible.  With 
this in mind it follows that 
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The streamwise momentum equation thus approximates to 
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where τ is shorthand notation for τR13, i.e. the only Reynolds stress retained after the 
boundary layer approximations. 
 
In summary, the slender flow approximations to the 2-D Reynolds formulation for river 
flow consist of (1.13) for water mass conservation, (1.23) for streamwise water 
momentum conservation and (1.19) for upward normal water momentum conservation. 
 
 
1.5 THE DE ST. VENANT SHALLOW WATER EQUATIONS 
 
A depth averaged streamwise flow velocity U(x, t) can be defined as follows; 
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In general the structure of the streamwise flow velocity in the upward normal direction 
can be represented in terms of a dimensionless structure function f, where 
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Approximate similarity in the velocity structure is satisfied if the dependence of f on can 
be neglected.  Such conditions are often satisfied for the slowly varying flows satisfying 
the boundary layer approximations.  For example, for turbulent rough flow f can be 
approximated as a function of ζ1/6 independently of x.  Substituting (1.25) into (1.24), it is 
seen that 
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Equations (1.13) and (1.23) are now integrated in z from the bed to the water surface.  
The boundary conditions at the bed are 
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The kinematic boundary condition applies at the water surface; 
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In the absence of wind stresses, the following dynamic boundary condition applies at the 
water surface; 
 
 0

Hz
=τ

=
         (1.29) 

 
The integration proceeds using Leibnitz’ rule wherever necessary.  For example, in (1.13) 
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The result for (1.13) is 
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The result for (1.23) is 
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where again τb denotes the evaluation of τ at the bed and s denotes an o(1) shape factor 
given by 
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For fully turbulent river flow the shape factor s is typically found to be sufficiently close 
to unity that it is approximated as so.  This approximation is used here: 
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GP Lecture Notes: Sediment Transport  10 

 
1.6 THE QUASI-STEADY APPROXIMATION: FRICTION RELATIONS 
 
The feature of interest when flow is linked to sediment transport is that the bottom 
boundary becomes deformable.  That is, the differential transport of sediment changes the 
shape of the bottom.  It is a cardinal rule of river flow, however, that rivers transport 
orders of magnitude more water than sediment.  This allows for the quasi-steady 
approximation, according to which the flow is approximated as steady while the bed is 
evolving.  The approximation can be justified rigorously by showing that the 
characteristic time for the bed to respond to a changed flow is orders of magnitude larger 
than that for the flow to respond to a changed bed.  Under these conditions, and assuming 
s = 1, the shallow water equations reduce to 
 
 wqUH =          (1.34) 
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In the above equations qw denotes the water discharge per unit width and Cf denotes a 
frictioin coefficient defined as 
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  The quasi-steady approximation breaks down for critical and supercritical flow in the 
Froude sense, i.e. for flows for which the Froude number Fr ≥ 1, where 
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In order to close the above equations, it is necessary to introduce a friction relation.  
Recalling that 2

b u ∗ρ=τ , the logarithmic velocity profile for fully rough flow can be 
specified as 
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where ks denotes a roughness height.  Integrating this equation according to (1.24), it is 
found that 
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The above relation is known as Keulegan’s law.  An accurate power approximation of it 
is given by the Manning-Strickler relation; 
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1.7 NORMAL FLOW 
 
The condition of steady, uniform flow is called normal flow in the field of hydraulics.  
This simple flow provides a paradigm against which the gradually varied flow of the de 
St. Venant equations can be compared.  For such a flow (1.35) reduces to 
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If the water discharge per unit width qw, the bed slope S and the roughness height ks are 
known, it is possible to solve for U and H from (1.34) and (1.40) with the aid of either 
(1.38) or (1.39).  Boundary shear stress τb is then given by (1.36). 
 
 
1.8 THE DE ST. VENANT EQUATIONS WITH LATERAL VARIATION 
 
The above derivation considers only the case with streamwise and upward normal 
variation in the flow.  The extension to transverse variation is straightforward.  Where V 
denotes the depth-averaged transverse flow velocity and y denotes a boundary attached 
transverse coordinate, the resulting equations take the form 
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