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CHAPTER 2 
RELATIONS FOR SEDIMENT CONTINUITY 
 
 
 
2.1 INTRODUCTION 
 
Rivers move sediment in a variety of forms.  At very steep slopes sediment may be 
moved in the form of debris flows.  These flows consist of slurries for which the solid 
fraction by weight is of the same order of magnitude as the water fraction.  Here, 
however, the sediment transport typical of rivers is considered. 
 
In rivers the ratio of annual sediment discharge to annual water discharge is in general a 
very small number.  That is, typically rivers move much more water than they do 
sediment.  Sediment can be moved as either wash load or bed material load.  Wash load 
consists of material that moves down the system without interacting with the channel bed.  
For example, in most sand bed streams the majority of the load is in the range of medium 
silt to clay, sizes that are present in the bed in only negligible quantities.  In the case of 
gravel bed streams, sand may move through as a type of washload known as throughput 
load; the sand may deposit in the interstices of the gravel, but otherwise does not 
determine bed morphology. 
 
These notes are concerned with bed material load.  This is the portion of the load that is 
found on the bed of the stream and actively undergoes exchange between the bed and the 
water column.  Bed material load may move as bedload or suspended load.  Bedload 
consists of grains that slide, roll or hop (saltate) over the bed, with saltation being the 
most important mechanism.  Turbulence plays an auxiliary role in the mechanics of 
bedload transport, which are largely governed by water drag and the role of bed collisions 
in converting streamwise particle momentum to upward particle momentum, so 
maintaining the saltation.  Particles participating in bedload typically hug the bed as they 
move.  The primary hydraulic factor determining the rate of bedload transport is the 
boundary shear stress τb.  Bedforms such as dunes offer form drag that increase overall 
resistance without helping to transport sediment.  With this in mind, it is that component 
of τb associated with skin friction, τbs that determines the bedload transport rate.  Bedload 
tends to respond rather quickly to changes in boundary shear stress. 
 
Particles participating in suspended load feel the turbulence, and can be wafted high into 
the water column by the action of the eddies.  Only the rate of entrainment of such 
particles from the bed is determined by boundary shear stress.  The transport rate itself is 
generally not locally in phase with variations in boundary shear stress. 
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Sand bed streams have median grain sizes D50 between 0.0625 and 2 mm, with the vast 
majority of cases falling in the range 0.1 to 0.8 mm.  In such streams both bedload and 
suspended load play important roles in the bed material load, with suspended load 
dominating at flood conditions such as bankfull, when the river just spills out onto its 
floodplain.  Gravel bed streams typically have a surface D50 between 10 and 200 mm.  
Such sizes are rarely suspended even at flood flows, so most of the sizes move as 
bedload.  The sand in the interstices of the gravel can move as bedload or suspended load, 
with the latter playing the dominant role.  Insofar as the sand is insufficient to cover the 
bed, however, it can be treated as throughput load. 
 
The river bed changes over time in response to differential transport of sediment.  In 
order to understand how this works, however, it is useful to specify some example 
sediment transport relations.  The following notation is used below: qb denotes the 
volume bedload transport per unit width, qs denotes the volume suspended sediment 
transport rate per unit width, and qt = qb + qs denotes the total volume suspended 
sediment transport per unit width.  The mass transport per unit width is obtained from any 
of these quantities by multiplying by the sediment density ρs. 
 
 
2.2 EXAMPLE SEDIMENT TRANSPORT RELATIONS 
 
A venerable relation for bedload transport is the relation of Meyer Peter and Muller 
(1948).  It takes the form 
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where the dimensionless Einstein number is defined as 
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and the dimensionless Shields stress is defined as 
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In the above equations D denotes a characteristic grain size of the bed material (e.g. D50), 
R is given by 
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and τc

∗ denotes a critical Shields stress for the onset of sediment motion.  For most 
natural sediments R is close to 1.65; in the Meyer Peter and Muller relation the 
experimentally determined value of τc

∗ is 0.047.  The equation was originally developed 
for gravel bed streams with negligible bedforms.  If bedforms are present, τb must be 
replaced with only the portion due to skin friction τbs in the definition of (2.3). 
 
The Meyer Peter and Muller relation has been superseded by more accurate relations.  
This notwithstanding, it serves as a prototype for bedload transport relations.  The 
impelling force is the drag force on the bed, quantified in the relation by the numerator of 
the Shields stress.  The resisting force is the submerged weight of the particle, quantified 
in terms of the denominator of the Shields stress. 
 
In the case of suspended sediment, the quantity that can be expected to vary with 
boundary shear stress is the volume rate of entrainment of sediment into suspension per 
unit time per unit bed area E.  This parameter can be replaced by a dimensionless 
entrainment rate E by the intermediary of the terminal fall velocity in still water vs of the 
sediment in question; 
 
 Evs=E          (2.5) 
 
A sample relaton for E versus Shields stress is that of Smith and McLean: it takes the 
form 
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Since bedforms are particularly prevalent in the case of sand bed streams, the Shields 
stress in the above relation must refer only to skin friction. 
 
 
2.3 EQUATION OF SEDIMENT CONTINUITY 
 
The equation of sediment continuity was first delineated by the Austrian researcher Exner 
near the beginning of the 20th century, and is named in honor of him.  First a one-
dimensional case is considered.  As with the de St. Venant equations, x represents a 
boundary attached downstream coordinate.  Sediment mass balance is expressed in 
volume form (by dividing the mass balance by ρs) below; 
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In the above relation λp denotes the porosity of the bed deposit and bc  denotes the 
volume concentration of suspended sediment, averaged over turbulence, just above the 
bed.  Bedload is seen to act as a flux term and suspended sediment as a source/sink term.  
The bed elevation of a control volume increases if more bedload is entering than exiting, 
resulting in net deposition of bedload.  Noting that vs bc  denotes the volume flux of 
suspended sediment settling on to the bed and vs E denotes the volume flux of 
entrainment of bed sediment into suspension, bed elevation increases due to the net 
deposition of suspended sediment if bc  > E. 
 
When the length scales of interest are large compared to the relaxation distance (U/vs) H 
associated with the settling of suspended sediment, (2.7) can be rigorously reduced to a 
simpler form, 
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Such a formulation is usually not adequate to explain such features as ripples and dunes 
which have a rather short wavelength.  It is partially adequate to explain bars, and is 
generally adequate to explain bed aggradation and degradation (increases and decreases 
in bed elevation) over many kilometers in response to e.g. a channel cutoff or diversion.  
To implement the equation qs is determined as a function of τb and other parameters for 
equilibrium conditions, and this relation is applied to the mild disequilibrium 
characteristic of bed changes which are distributed over long distances. 
 
In order to explain two-dimensional features such as bars, however, it is necessary to 
consider a two-dimensional form for the Exner equation.  The two-dimensional form for 
(2.7) is 
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where (qbx, qby) denotes the bedload transport vector tangential to the boundary.  The 
bedload transport function is usually generalized to the two-dimensional case such that 
the vector of bedload transport is parallel to the vector of boundary shear stress (τbx, τby).  
That is, if 
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denotes the scalar relation for the one-dimensional case, the two-dimensional 
generalization is 
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The above equations must, however, be adjusted to account for the tendency for bedload 
to move down streamwise or transverse bed slopes when they are substantial.  Such is the 
case in a treatment of river meandering.  The appropriate forms of τbx and τby consistent 
with (1.42) and (1.43) are 
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These forms must also be modified in a treatment of meandering in order to account for 
the effect of secondary flow associated with bends. 
 
In the two dimensional case the dimensionless entrainment rate E must be taken as a 
function of the magnitude of the shear stress vector bτ  rather than any component of 
that vector. 
 
The generalization of (2.8) to the two dimensional case is straightforward; 
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where qtx and qty denote the x and y components of the total bed material load (bedload + 
suspended load). 
 
Various other forms of sediment continuity could be introduced, e.g. a formulation for 
mixtures of sediment sizes.  One form of relevance to these notes is the Exner equation in 
the case of tectonic subsidence.  It is this subsidence that creates the accommodation 
space for such large features as alluvial fans.  For such large scales a formulation using 
total load is adequate.  Fans are two-dimensional features, but approximate radial 
symmetry allows for an effective one-dimensional treatment.  The fan is built up by 
constantly aggrading and avulsing (jumping) channels.  Fan width Bf typically increases 
with radial distance r down the fan.  Let Bc denote the channel width at a point and qt 
denote the effective mean bed material transport rate in the radial direction, i.e. shorthand 
for qtr.  The equation of sediment continuity for this problem takes the form. 
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where σ denotes the velocity of subsidence of the crust of the earth below the fan. 
 
 
2.4 CONTINUITY OF SUSPENDED SEDIMENT 
 
In order to apply the above formulation to cases with suspended sediment, it is necessary 
to know the near-bed mean concentration of suspended sediment bc .  This requires an 
accounting of sediment balance everywhere in the water column. 
 
Let c(xi, t) denote the instantaneous volume concentration of suspended sediment in the 
water column (volume of sediment/volume of sediment+water) as a function of position 
xi and time t, and let usi denote the local velocity of the sediment particles.  Local mass 
balance reduces to the following volume form; 
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For sufficiently fine sediment the sediment velocity can be accurately approximated as 
the sum of the fluid velocity and the terminal fall velocity in still water; 
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where again nvi denotes an upward vertical coordinate.  Substituting (2.16) into (2.15) 
and averaging over turbulence, it is found that 
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where the overbar again denotes averaging and the primed quantities again denote 
fluctuations.  The Reynolds fluxes of suspended sediment are the quantities cu ′′  etc. on 
the right-hand side of the equation.  These fluxes are typically expressed in terms of a 
formulation using an eddy viscosity.  In the above relation the upward normal coordinate 
is taken to deviate only slightly from the vertical, an assumption consistent with the 
assumption of small bed slope S. 
 
The net rate of sediment accumulation on the bed is determined by the sediment flux 
crossing the bed.  Approximating the bed as facing vertically upward, this flux is given 
by 
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Recalling that vs bc  denotes the rate of depositional flux on the bed, it follows that the 
volume rate of entrainment of sediment from the bed into suspension per unit bed area 
per unit time E is given by 
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Here the vertical Reynolds flux is closed as 
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where νe denotes a kinematic eddy diffusivity.  The bottom boundary condition for the 
the sediment suspension field thus takes gradient form; 
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where E is a specified function of shear stress, as outlined above. 
 
Attention is now focused on steady, uniform equilibrium suspensions.  For this case 
(2.17) reduces to 
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Integrating under the condition of vanishing sediment flux at the water surface, it is found 
that 
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The combination of (2.19), (2.22) and (2.23) specifies the following ordinary differential 
equation, 
 

 0cv
dz

cd
se =+ν         (2.24) 

 
subject to the boundary condition (2.21).  In the case of an equilibrium suspension, 
however, it is seen from (2.21), (2.22) and (2.23) applied to the bed that 
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 Ecb =          (2.25) 
 
Rouse used the Prandtl analogy to obtain νe from a momentum formulation.  While in 
retrospect there are several flaws in his formulation, it grasps the essence of the problem.  
Specifically, he combined the linear shear stress distribution associated with steady, 
uniform flow 
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with an eddy diffusivity formulation for momentum 
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and the logarithmic flow velocity of (1.38) to obtain the evaluation 
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where κ = 0.4 denotes the Karman constant.  Integrating (2.24) with the aid of (2.21), 
(2.25) and (2.28) it is found that 
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where ζ = z/H, ζb = b/H where b/H<<1 and Zr is the Rouse number, given by 
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and bc  is evaluated from (2.25) and an appropriate entrainment relation. 
 
Note that bc  is not evaluated precisely at the bed, but rather a small distance z = b above 
this.  The reason for this is that the form of (2.28) predicts vanishing eddy viscosity 
precisely at the bed.  Setting the boundary condition slightly above the bed circumvents a 
complex but ultimately unimportant boundary layer problem associated with near-bed 
turbulence in a hydraulically rough turbulent field. 
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Equation (2.29) predicts that the sediment concentration should be concentrated very 
close to the bed for large Rouse numbers, i.e. coarse sediment, and should be essentially 
uniform in the vertical for small Rouse numbers, i.e. fine sediment.  This is in agreement 
with the following empirical criterion for the onset of significant sediment suspension; 
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That is, the shear velocity must exceed the fall velocity for significant sediment 
suspension. 
 
The Rousean theory has been modified over the years, but captures the essence of 
equilibrium suspended sediment mechanics.  The volume suspended sediment load per 
unit width qs is in general given by 
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This can be evaluated from the equilibrium case by substituting in (2.29) and (1.38) and 
integrating. 
 


