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CHAPTER 3 
RELATIONS FOR BEDLOAD AND SUSPENDED LOAD 
 
 
 
3.1 INTRODUCTION 
 
Alluvial rivers are authors of their own geometry.  They create their own channel, with a 
characteristic bankfull width and depth.  Although slope is partly imposed by geological 
constraints, rivers are nevertheless free to change slope substantially by means of 
aggradation and degradation. 
 
Alluvial rivers can be broadly categorized into two types; sand bed streams and gravel 
bed streams.  Sand bed streams typically have values of bed material median size D50 
between 0.1 and 0.8 mm; the range of sizes is usually rather modest.  Gravel bed streams 
have values of surface sediment D50 ranging from 10 to 200 mm; substrate D50 is usually 
finer by a factor of 1.5 to 2 due to a surface armor present at low flow.  The range of sizes 
is usually quite wide, including up to 30% sand in the interstices of the gravel. 
 
The relative lack of streams in the intermediate range is due to both geologic and 
mechanistic factors.  Weathered granite, however, can yield sediment in the range 1 – 10 
mm, so such streams are occasionally observed.  This notwithstanding, the dichotomy 
between the two types is best represented in terms of a dimensionless regime diagram, 
here presented as Figure 2.1.  The horizontal axis of the diagram is an explicit particle 
Reynolds number, given by 
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where D is characteristic grain size and ν is the kinematic viscosity of water, and the 
vertical axis is Shields stress τ∗.  Shown on the diagram are three lines.  The first of these 
describes the critical condition for the onset of motion; where τc

∗ denotes a critical 
Shields stress, 
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The above relation represents my modification of Brownlie’s (1981) fit to the original 
Shields curve.  The second of these corresponds to the criterion for the onset of 
significant suspension (2.31), reduced with the Dietrich (1982) relation for fall velocity; 
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Figure 2.1 Dimensionless regime diagram for streams. 
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and b1 = 2.891394, b2 = 0.95296, b3 = 0.056835, b4 = 0.002892 and b5 = 0.000245.  The 
third of these takes the forms 
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where δv denotes a scale for the thickness of the viscous sublayer.  Empirical evidence 
indicates that small-scale ripples form when D/δv < 1; for larger values ripples give way 
to larger dunes, the characteristics of which are independent of viscosity. 
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Finally, data pertaining to the Shields stress τ∗ at bankfull conditions in a variety of sand 
bed streams (both single channel and multiple channel) and gravel bed streams (Wales, 
U.K., Alberta, Canada and Pacific Northwest, USA).  The Shields stress was estimated 
assuming normal flow; according to (1.36). (1.40) and (2.3), 
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where H refers to bankfull depth. 
 
The very different regimes for sand bed streams and gravel bed streams at bankfull 
conditions are readily apparent.  Bankfull flow typically corresponds to a flood with a 
mean return period of 1 to 5 years.  Sand bed streams can carry significant suspensions of 
the bed material; in gravel bed streams the gravel is not suspended.  It is also the case that 
sand bed streams are typically in a regime for which dunes form readily at all but the 
highest flows (where they give way to upper regime plane bed or antidunes), whereas 
gravel bed streams often do not have prominent dunes even at flood flows. 
 
 
3.2 RELATIONS FOR HYDRAULIC RESISTANCE 
 
In order to compute sediment transport it is necessary to solve for the boundary shear 
stress τb, either from equilibrium normal flow or from the governing equations for 
disequilibrium flow, i.e. the de St. Venant equations for phenomena with a streamwise 
length scale that is large compared to the depth and the Reynolds equations with an 
appropriate turbulent closure for phenomena that scale with the depth or smaller. 
 
Here it is assumed that the shallow water equations are applicable.  In a gravel bed stream 
at flood conditions, form drag can often be neglected, and the appropriate resistance 
relations are (1.36) and (1.38), where 
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and Ds90 denotes a surface size such that 90% is finer. 
 
In the case of a sand bed stream a somewhat more complicated approach must be taken to 
account for the effect of the dunes.  The following method, developed by Engelund and 
Hansen (1967) using the Einstein decomposition for skin friction and form drag, takes the 
following form for normal (steady uniform) flow; 
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(3.8a,b,c) 
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where 
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In the above relations, τbs, Cfs, Hs and τs

∗ denote the components of τb, Cf, H and τ∗ 
associated with skin friction, and τbf, Cbf and Hf denote the corresponding components 
due to form drag.  In point of fact (3.10) applies only to lower regime flow, i.e. flows 
with sufficiently low Froude numbers so that antidunes or upper regime plane beds do not 
form.  This is, however, the most common case in sand bed streams. 
 
Implementation of the above scheme is iterative.  If Hs is guessed for a flow in a river 
reach with known bed slope S and grain size D, Cfs can be found from (3.9), U from 
(3.8b), τs

∗ from (3.8b) and (3.11), τ∗ from (3.10), H from (3.6) and water discharge per 
unit width qw from (1.34).  Total water discharge Qw is then given by the approximate 
relation 
 
 BqQ ww =          (3.12) 
 
where B denotes stream width at the flow in question.  The depth Hf is given by H – Hs 
and Cff is then given by (3.8c) 
 
The above method is easily generalized for gradually varied flow.  The method involves 
evaluating Cf = Cfs + Cff at a known value of H in the stepwise upstream integration of 
(1.35).  Again, iteration is performed using Hs as an intermediary. 
 
 
3.3 RELATIONS FOR BEDLOAD TRANSPORT 
 
The theory behind bedload transport formulations has only recently reached mature form.  
While the treatment is fascinating (see e.g. Wiberg and Smith, 1989) there is no room in 
these notes for great detail.  Suffice it to say that a rigorous analysis of the equations of 
motion of saltating particles leads to bedload relations that are of the general form of the 
relation of Meyer Peter and Muller (2.1) 
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Three other relations of this form are of interest.  The relation of Ashida and Michiue 
(1972) provides excellent results for bedload transport in the presence of bedforms; it 
takes the form 
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where τc

∗ takes a value of 0.05.  The relation was verified with uniform bed material 
ranging from 0.3 to 7 mm, with most of the data in the sand range.  The relation of 
Engelund and Fredsoe (1976) is quite similar; 
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The relation of Parker (1990) is specifically designed for field gravel bed streams with a 
wide range of sizes.  For this reason the relation is rather involved.  The surface size 
distribution is divided into ranges i = 1..N, each with characteristic size Di and fraction 
content in the surface layer Fi.  Here Fi is normalized to include only sizes ≥ 2 mm, and 
must sum to unity.  The geometric mean grain size Dsg and geometric standard deviation 
σsg of the surface material are given by 
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and 
 
 )D(n i2i l=ψ          (3.17) 
 
A dimensionless bedload transport rate Wsi

∗ is defined as 
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The transport relation is specified as 
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where qbi is the bedload transport rate of the ith grain size range and 
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and 
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In (3.18), σsao and ωo are specified functions of φsgo that can be found in the original 
reference.  The function G is given as 
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Note that the relation includes both the geometric mean size of the surface material Dsg 
and the geometric standard deviation of the surface material σsg in the formulation.  In the 
limit of uniform material it reduces to a form similar to Wiberg and Smith (1989).  
Software has been developed for easy application. 
 
In some cases the effect of gravity impelling bedload particles down slopes must be 
included in the bedload formulation.  This factor is almost negligible in terms of mean 
streamwise bed slope, but can become important on e.g. the lee side of dunes or on the 
side slopes of point bars.  This element turns out to be critical to a correct analysis of 
dunes, alternate bars and meander bends.  Many researchers have approached this 
problem.  In the case of relatively small bed slopes, Parker and Andrews (1985) have 
suggested the following relation; 
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where f denotes the bedload function for the unidirectional case in the absence of 
significant bed slopes and 
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where β∗ is an order one constant and τ∗ is based on shear stress magnitude. 
 
 
3.4 RELATIONS FOR ENTRAINMENT INTO SUSPENSION 
 
The Smith-McLean relation has been introduced previously as (2.6).  The value b at 
which the entrainment rate is to be evaluated corresponds to the top of the bedload layer, 
and is given by the relation 
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Garcia and Parker (1991) have developed the following relation for E; 
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where A = 1.3x10-7 and 
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In the above relation u∗s is meant to be evaluated with (3.10) for lower regime conditions, 
and the corresponding relation from Engelund and Hansen (1967) for upper regime 
conditions.  The parameter b is evaluated simply as 
 
 H05.0b =          (3.25) 
 
Van Rijn (1984) has also offered a useful and accurate entrainment relation. 
 
 
3.5 RELATIONS FOR TOTAL LOAD 
 
A number of useful empirical predictors for total bed material load (bed load + suspended 
load) in sand bed streams.  The relations of Ackers and White (1973) and Yang (1973) 
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are considered to be reliable.  The author’s favorites for such relations are, however, 
those of Engelund and Hansen (1967) and Brownlie (1981). 
 
The former relation takes the simple form 
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It should always be used in conjunction with theEngelund-Hansen resistance relation, as 
outlined above for lower regime conditions. 
 
The Brownlie (1981) relation is rather more complicated.  Let Qst=qtB and 
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denote the mass concentration of sediment in parts per million.  The Brownlie relation 
takes the form 
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In (3.28) σg denotes the geometric standard deviation of the bed sediment, and the 
parameter ca takes the value 1.0 for flumes and 1.268 for field channels.  If the channel is 
narrow mean depth H should be replaced by the hydraulic radius Rh. 
 
The Brownlie relation should be used in conjunction with the Brownlie resistance 
relation, which takes the form 
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