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CHAPTER 1 

INTRODUCTION TO MORPHODYNAMICS 
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River problems are formulated in boundary layer 

coordinates: 
 

x is an arc-length coordinated imbedded in the stream 
bottom 

 
z is an upward normal coordinate 

 
η is bed elevation 
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−=  is bed slope << 1 for most river problems 
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1-D St. Venant shallow water equations 
 
 

Flow momentum balance 
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where u is depth-averaged flow velocity, τb denotes 

boundary shear stress, g is the acceleration of gravity  
and ρ is water density 

 
 

Flow mass balance 
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Closure for boundary shear stress: 
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where Cf is a friction coefficient 

 
 



Gary Parker Saint Oyen 3

Relations for friction coefficient 
 

Keulegan relation 
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Manning-Strickler relation 
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where ks is a roughness height and 
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Normal flow 

 
Steady, uniform equilibrium flow 
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2-D generalization 
 

y is transverse coordinate, v is depth-averaged 
transverse velocity 
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Bedload and suspended load 
 

Modes of sediment transport: 
wash load or bed material load 

 
Modes of bed material transport 

bedload or suspended load 
 

bedload: 
sliding, rolling or saltating just above bed 

role of turbulence is indirect 
 

suspended load: 
feels direct dispersive effect of eddies 

may be wafted high into the water column 
 

driving parameter: 
portion of boundary shear stress associated with 

skin friction 
 

τb = τbs + τbf 
shear stess = skin friction + form drag (bedforms) 

 
bedload: transport rate = fn(τbs) 

suspended load: entrainment rate = fn(τbs) 
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Sample bedload relation 
 

Meyer Peter and Muller (1948) 
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Einstein number: 
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Shields number: 
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 qb =volume transport rate of bedload/width/time 
 (m2/s: corrsponding mass transport rate = ρsqb) 

D =grain size 
 R = (ρs/ρ-1)  ρs = sediment density 
 τc

∗ = critical Shields number (M.P.M.: 0.047) 
 τb → τbs in presence of bedforms 
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Sample entrainment relation for suspension 
 
 

Smith and McLean (1977) 
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where 

 

sv
E sE
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and 
 

 Es = volume entrainment rate/bed area/time 
(m/s: corresponding mass rate =  ρaEs) 
vs = fall velocity in quiescent water 
 
 
Again τb → τbs (τ∗ → τs

∗) with bedforms 
 
 



Gary Parker Saint Oyen 8

Equation of continuity of bed sediment 
 

(Exner equation) 
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λp = bed porosity 

t = time 
 

lbss cvEv == ss DE  
(volume entrainment and deposition rates) 
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lbc  = near-bed volume suspended sediment 

concentration 
 

If length scale of interest >> u h/vs, global: 
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2-D generalization: 
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Generalization for bedload transport 
(in absence of direct gravity effects) 

 
scalar form: 
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vector form: 
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Generalization for entrainment into suspension: 

E = function of bτ  
(τb → τbs in presence of bedforms) 
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Equation of continuity of suspended sediment 
 

Let cl(x, y, z, t) denote the local volume 
concentration of suspended sediment. 

Here we assume a dilute suspension, i.e. cl << 1 
 
 
 

Balance equation for suspended load: 
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where (ul, vl, wl) denote local flow velocities in the 

(x, y, z) directions averaged over turbulence, 
cw ′′  

etc. denote Reynolds fluxes of suspended sediment 
and vs denotes the fall velocity of the suspended 

sediment 
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Upward normal flux of suspended sediment 
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Vertical flux at bed: 
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Thus 
 

beds cwEv ′′==sE  
 

Close with eddy viscosity: 
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Thus bottom boundary condition is of flux form: 
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where E is a function of boundary shear stress 
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Equilibrium suspensions 
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vanishing flux at water surface → 

 
0Fxz =  

 
introduce eddy viscosity 
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applying flux boundary condition 
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Rousean formulation for dilute suspensions 
(not perfect) 

 
Reynolds shear stress distribution for equilibrium 

flow 
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rough logarithmic law 
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eddy diffusivity 
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solve for eddy diffusivity 
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(note νe vanishes at z = 0) 
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Integrating (a) subject to (b) and (c), 
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where 

 
ζ = z/H, ζb = zb/H 

 
and the Rouse number Zr is given by 
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and κ = 0.4 is the Karman constant. 
 

Criterion for onset of suspension: 
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Relation for volume suspended sediment 

transport/width/time: 
 

∫=
H

0 lls dzcuq  

 



Gary Parker Saint Oyen 15

Depth-integrated conservation of suspended 
sediment 

 
Integrate 
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from z = 0 to z = h after applying boundary-layer 

approximations; obtain (1-D) 
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where c is depth-averaged suspended sediment 

concentration and 
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1-D depth-integrated quasi-steady formulation for 
morphodynamics 

 
Conservation of flow momentum 
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Conservation of flow mass 
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Conservation of suspended sediment 

)crE(v)uch(
x

)ch(
t os −=

∂
∂

+
∂
∂

 

 
Conservation of bed sediment 
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or thus from conservation of suspended sediment 
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where qs = uch, qt = qb + qs 
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Stream types 
 
 
 

Sand-bed and gravel-bed alluvial streams 
 

Sand-bed: 
Surface median size D50 ~ 0.1 to 0.8 mm 

little sediment stratification 
dunes often prominent at flood flow 

bed slope S is 1x10-5 ~ 2x10-3 
 

Gravel-bed 
surface D50 10 ~ 200 mm 

surface D50 ~ 1.5 to 3 x substrate D50 
dunes not common 

bed slope is 5x10-4 to 3x10-2 
 

Regime diagram: τ∗ versus 
explicit particle Reynolds number 
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Relations for the threshold of motion and fall 
velocity 

 
Criterion for the threshold of motion 

(based on Shields, 1936, Brownlie, 1981) 
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Criterion for the onset of suspension 
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Relation for fall velocity 
(Dietrich, 1982) 
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b1 = 2.891394, b2 = 0.95296, b3 = 0.056835, b4 = 

0.002892 and b5 = 0.000245 
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Criterion for viscous effects: bankfull flow 
 

Criterion for viscous effects (ripples) 
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Data for rivers at bankfull conditions 
 

use normal flow approximation 
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where h refers to bankfull conditions 
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Regime diagram for stream type 
 
 
 
 
 
 

Shields Regime Diagram
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Relations for hydraulic resistance 
 
 

Gravel-bed rivers in flood 
(when sediment is moved) 

 
Bedforms often not important: 

τb = τbs 
 

Use Keulegan relation: 
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with ks = n Ds90, n = 2 ~ 3 

Ds90 = surface D90 size 
 

Sand-bed rivers 
 

Bedforms often extremely important 
 

Froude number Fr given by 
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Relations for hydraulic resistance continued 
 

Lower regime: dunes, prominent form drag 
 

6.0about≤Fr  
 

Upper regime: plane bed – antidunes, little form drag 
 

6.0about≥Fr  
 

Einstein (1950) decomposition for normal flow: 
Split up τb Cf and h as 

 
τb = τbs + τbf,  Cf = Cfs + Cff,  h = hs + hf 

 
(skin friction + form drag) 

at same u and S 
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Engelund-Hansen (1967): skin friction & form drag: 
 

D5.2k)
k
h11(n5.2C s

s

s2/1
fs ==− l  

 
2

s )(4.006.0 ∗∗ τ+=τ  



Gary Parker Saint Oyen 23

Relations for hydraulic resistance continued 
 
 

Solution is iterative 
Let S and D be given 

Guess hs, get τs
∗, then τ∗, then h, 

Get Cfs, then u, then 
 

qw = uh 
 

then 
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where B denotes stream width 
 

Method easily generalizes for 
gradually varied flow: 

for given h iterate to find Cf, use this value in 
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and integrate upstream 

(subcritical flow: Fr < 1) 
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Useful relations for total load 
 

Engelund-Hansen (1967) 
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Use in conjunction with Engelund-Hansen 

resistance relation 
 
 

Brownlie (1981) 
 

Let Qst=qtB where B = channel width and 
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where ca = 1 for laboratory flumes and 1.26 for 
natural streams 
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Useful relations for total load continued 
 

where 
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In the above σg = geometric standard deviation 

of bed sediment 
 

Use in conjunction with the Brownlie 
resistance relation: 
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and qw = water discharge per unit width 


