Short Course: Geomorphological Fluid Mechanics Saint-Oyen, Italy, 2000

CHAPTER 1 **INTRODUCTION TO MORPHODYNAMICS**

River problems are formulated in *boundary layer coordinates*:

x is an arc-length coordinated imbedded in the stream bottom

z is an upward normal coordinate

η is bed elevation

x S ∂ ∂η $=-\frac{641}{2}$ is bed slope << 1 for most river problems

1-D St. Venant shallow water equations

Flow momentum balance

$$
\frac{\partial}{\partial t}(\text{uh}) + \frac{\partial}{\partial x}(\text{u}^2 \text{h}) = -gh \frac{\partial \text{h}}{\partial x} + ghS - \frac{\tau_b}{\rho}
$$

where u is depth-averaged flow velocity, τ_b denotes boundary shear stress, g is the acceleration of gravity and ρ is water density

Flow mass balance

$$
\frac{\partial \mathbf{h}}{\partial \mathbf{t}} + \frac{\partial}{\partial \mathbf{x}} (\mathbf{u} \mathbf{h}) = 0
$$

Closure for boundary shear stress:

$$
\tau_b = \rho C_f u^2
$$

where
$$
C_f
$$
 is a friction coefficient

Relations for friction coefficient

Keulegan relation

$$
C_f^{-1/2} = \frac{u}{u_*} = 2.5 \ln(11 \frac{h}{k_s})
$$

Manning-Strickler relation

$$
C_f^{-1/2} = 8.1 \left(\frac{h}{k_s}\right)^{1/6}
$$

where k_s is a roughness height and

$$
u_* = \sqrt{\frac{\tau_b}{\rho}}
$$

Normal flow

Steady, uniform equilibrium flow

$$
C_f u^2 = ghS
$$
 $uh = q_w$
 $\tau_b = \rho C_f u^2 = \rho ghS$

2-D generalization

y is transverse coordinate, v is depth-averaged transverse velocity

$$
\frac{\partial}{\partial t} (uh) + \frac{\partial}{\partial x} (u^2 h) + \frac{\partial}{\partial y} (uvh) =
$$
\n
$$
-gh \frac{\partial h}{\partial x} - gh \frac{\partial \eta}{\partial x} - C_f (u^2 + v^2)^{1/2} \frac{u}{h}
$$
\n
$$
\frac{\partial}{\partial t} (vh) + \frac{\partial}{\partial x} (uvh) + \frac{\partial}{\partial y} (v^2 h) =
$$
\n
$$
-gh \frac{\partial h}{\partial y} - gh \frac{\partial \eta}{\partial y} - C_f (u^2 + v^2)^{1/2} \frac{v}{h}
$$
\n
$$
\frac{\partial h}{\partial t} + \frac{\partial}{\partial x} (uh) + \frac{\partial}{\partial y} (vh) = 0
$$
\n
$$
\tau_{bx} = \rho C_f \sqrt{u^2 + v^2} u
$$
\n
$$
\tau_{by} = \rho C_f \sqrt{u^2 + v^2} v
$$

Bedload and suspended load

Modes of sediment transport: **wash load** or **bed material load**

Modes of bed material transport **bedload** or **suspended load**

bedload:

sliding, rolling or saltating just above bed role of turbulence is indirect

suspended load:

feels direct dispersive effect of eddies may be wafted high into the water column

driving parameter:

portion of boundary shear stress associated with *skin friction*

 $\tau_{\rm h} = \tau_{\rm bs} + \tau_{\rm bf}$ shear stess $=$ skin friction $+$ form drag (bedforms)

bedload: *transport rate* = $fn(\tau_{bs})$ suspended load: *entrainment rate* = $fn(\tau_{bs})$

Sample bedload relation

Meyer Peter and Muller (1948)

$$
q_b^* = 8(\tau^* - \tau_c^*)^{1.5}
$$

Einstein number:

$$
q_b^* = \frac{q_b}{\sqrt{RgD D}}
$$

Shields number:

$$
\tau^* = \frac{\tau_b}{\rho R g D}
$$

 q_b =volume transport rate of bedload/width/time (m²/s: corrsponding mass transport rate = $\rho_s q_b$) $D = \text{grain size}$ $R = (\rho_s/\rho-1)$ ρ_s = sediment density τ_c^* = critical Shields number (M.P.M.: 0.047) $\tau_{\rm b} \rightarrow \tau_{\rm bs}$ in presence of bedforms

Sample entrainment relation for suspension

Smith and McLean (1977)

$$
E = 0.65 \frac{\tau_{c}^{*} - 1}{\tau_{c}^{*}} \qquad \gamma_{o} = 0.0024
$$

$$
1 + \gamma_{o} (\frac{\tau_{c}^{*}}{\tau_{c}^{*}} - 1)
$$

where

$$
E = \frac{E_s}{v_s}
$$

and

 E_s = volume entrainment rate/bed area/time (m/s: corresponding mass rate = $\rho_a E_s$) v_s = fall velocity in quiescent water

Again $\tau_b \rightarrow \tau_{bs} (\tau^* \rightarrow \tau_s^*)$ with bedforms

Equation of continuity of bed sediment

(Exner equation)

$$
(1 - \lambda_{\rm p}) \frac{\partial \eta}{\partial t} = -\frac{\partial q_{\rm b}}{\partial x} + D_{\rm s} - E_{\rm s}
$$

 λ_p = bed porosity $t = time$

 $E_s = v_s E$ $D_s = v_s c_{1b}$ (volume entrainment and deposition rates)

$$
(1 - \lambda_{\rm p}) \frac{\partial \eta}{\partial t} = -\frac{\partial q_{\rm b}}{\partial x} + v_{\rm s} (c_{\rm lb} - E)
$$

 C_{lb} = near-bed volume suspended sediment concentration

If length scale of interest $>>$ u h/v_s, global:

$$
(1 - \lambda_{\rm p}) \frac{\partial \eta}{\partial t} = -\frac{\partial q_{\rm t}}{\partial x} \qquad q_{\rm t} = q_{\rm b} + q_{\rm s}
$$

2-D generalization:

$$
(1-\lambda_{\mathrm{p}})\frac{\partial \eta}{\partial t}=-\frac{\partial q_{\mathrm{bx}}}{\partial x}-\frac{\partial q_{\mathrm{by}}}{\partial y}+v_{\mathrm{s}}(c_{\mathrm{lb}}-E)
$$

Generalization for bedload transport (in absence of direct gravity effects)

scalar form:

 $q_b = f(\tau_b)$

vector form:

$$
q_{bx} = f(|\tau_b|) \frac{\tau_{bx}}{|\tau_b|} \qquad q_{by} = f(|\tau_b|) \frac{\tau_{by}}{|\tau_b|}
$$

$$
|\tau_b|^2 = \tau_{bx}^2 + \tau_{by}^2
$$

$$
\tau_{bx} = \rho C_f (u^2 + v^2)^{1/2} u
$$

$$
\tau_{by} = \rho C_f (u^2 + v^2)^{1/2} v
$$

Generalization for entrainment into suspension: E = function of $|\tau_{b}|$ $(\tau_b \rightarrow \tau_{bs} \text{ in presence of bedforms})$

Equation of continuity of suspended sediment

Let $c_1(x, y, z, t)$ denote the local volume concentration of suspended sediment. Here we assume a *dilute* suspension, i.e. $c_1 \ll 1$

Balance equation for suspended load:

$$
\frac{\partial c_1}{\partial t} + \frac{\partial}{\partial x} (u_1 c_1) + \frac{\partial}{\partial y} (v_1 c_1) + \frac{\partial}{\partial z} (w_1 c_1)
$$

$$
-v_s \frac{\partial c_1}{\partial z} = -\frac{\partial}{\partial x} \overline{u'c'} - \frac{\partial}{\partial y} \overline{v'c'} - \frac{\partial}{\partial z} \overline{w'c'}
$$

where (u_1, v_1, w_1) denote local flow velocities in the (x, y, z) directions averaged over turbulence, w′c′ etc. denote Reynolds fluxes of suspended sediment

and v_s denotes the fall velocity of the suspended sediment

Upward normal flux of suspended sediment

$$
F_{xz} = (\overline{w'c'} - v_s c_1)
$$

Vertical flux at bed:

$$
F_{xz}|_{bed} = (\overline{w'c'} - v_s c_1)|_{bed} = E_s - D_s =
$$

$$
v_s E - v_s c_{lb}
$$
Thus

$$
E_{s} = \mathbf{v}_{s} \mathbf{E} = \overline{\mathbf{w}' \mathbf{c}'}_{\text{bed}}
$$

Close with eddy viscosity:

$$
\overline{\mathbf{w}'\mathbf{c}'} = -\mathbf{v}_{\mathbf{e}} \frac{\partial \mathbf{c}_1}{\partial \mathbf{z}}
$$

Thus bottom boundary condition is of flux form:

$$
-\mathbf{v}_{\rm e} \left. \frac{\partial \mathbf{c}_1}{\partial \mathbf{z}} \right|_{\rm bed} = \mathbf{v}_{\rm s} \mathbf{E}
$$

where E is a function of boundary shear stress

Equilibrium suspensions

$$
\frac{\partial}{\partial t} = \frac{\partial}{\partial x} = \frac{\partial}{\partial y} = 0 \qquad c_1 = c_1(z)
$$

 $F_{\rm xz} = 0$ $F_{\rm xz} = -v_{\rm s}c_1 + w'c$ dz d $F_{xz} = 0$ $F_{xz} = -v_s c_1 + \overline{w'c'}$

vanishing flux at water surface →

 $F_{xz} = 0$

introduce eddy viscosity

$$
v_e \frac{dc_1}{dz} + v_s c_1 = 0
$$
 (a)

applying flux boundary condition

$$
-v_e \frac{\partial c_1}{\partial z}\Big|_{bed} = v_s E = v_c c_{lb} \therefore c_{lb} = E
$$
 (b)

Rousean formulation for dilute suspensions (not perfect)

Reynolds shear stress distribution for equilibrium flow

$$
\tau_{Rxz} = \tau_b (1 - \frac{z}{h}) = \rho u_*^2 (1 - \frac{z}{h})
$$

rough logarithmic law

$$
\frac{u_1}{u_*} = \frac{1}{\kappa} \ell n(30 \frac{z}{k_s})
$$

eddy diffusivity

$$
\tau_{\text{Rxz}} = -\rho \overline{u'w'} = \rho v_e \frac{\partial u_1}{\partial z}
$$

solve for eddy diffusivity

$$
v_e = \kappa u_* z (1 - \frac{z}{h})
$$
 (c)

(note v_e vanishes at $z = 0$)

Integrating (a) subject to (b) and (c),

$$
c_1 = c_{1b} \left[\frac{(1-\varsigma)/\varsigma}{(1-\varsigma_b)/\varsigma_b} \right]^{Z_r} = E[\frac{(1-\varsigma)/\varsigma}{(1-\varsigma_b)/\varsigma_b}]^{Z_r}
$$

where

$$
\zeta = z/H, \, \zeta_b = z_b/H
$$

and the Rouse number Z_r is given by

$$
Z_{\rm r} = \frac{v_{\rm s}}{\kappa u_{\rm *}}
$$

and $\kappa = 0.4$ is the Karman constant.

Criterion for onset of suspension:

$$
\frac{u_*}{v_s} = 1
$$

Relation for volume suspended sediment transport/width/time:

$$
q_s = \int_0^H u_1 c_1 dz
$$

Depth-integrated conservation of suspended sediment

Integrate

$$
\frac{\partial c_1}{\partial t} + \frac{\partial}{\partial x} (u_1 c_1) + \frac{\partial}{\partial y} (v_1 c_1) + \frac{\partial}{\partial z} (w_1 c_1)
$$

$$
-v_s \frac{\partial c_1}{\partial z} = -\frac{\partial}{\partial x} \overline{u'c'} - \frac{\partial}{\partial y} \overline{v'c'} - \frac{\partial}{\partial z} \overline{w'c'}
$$

from $z = 0$ to $z = h$ after applying boundary-layer approximations; obtain (1-D)

$$
\frac{\partial}{\partial t}(ch) + \frac{\partial}{\partial x}(uch) = v_s(E - r_0c)
$$

where c is depth-averaged suspended sediment concentration and

$$
r_o = \frac{c_{lb}}{c}
$$

1-D depth-integrated quasi-steady formulation for morphodynamics

Conservation of flow momentum ρ τ $\frac{\partial u}{\partial x} + ghS \partial$ $\frac{\partial}{\partial x}(u^2h) = \partial$ + ∂ $\frac{\partial}{\partial y}(\mu h) + \frac{\partial}{\partial z}(u^2 h) = -gh \frac{\partial h}{\partial z} + ghS - \frac{\tau_b}{2}$ x $(u^2h) = -gh \frac{\partial h}{\partial x}$ x (μh) t

Conservation of flow mass $(uh) = 0$: $uh = q_w$ t ∂x h $= 0$: uh = ∂ ∂ + ∂ ∂

Conservation of suspended sediment $(uch) = v_s (E - r_c c)$ x $\chi(\text{ch})$ t $\frac{\partial}{\partial x}$ (uch) = v_s (E – r_o ∂ + ∂ ∂

Conservation of bed sediment v_s (c_{1b} – E) x q t $(1 - \lambda_p) \frac{\partial \mathbf{u}}{\partial t} = -\frac{\partial \mathbf{q}_b}{\partial x} + \mathbf{v}_s (c_{1b} \partial$ $\frac{\partial \mathbf{u}}{\partial t} = -\lambda_{n}$) $\frac{\partial \eta}{\partial n}$

or thus from conservation of suspended sediment

$$
(1 - \lambda_{\rm p}) \frac{\partial \eta}{\partial t} = -\frac{\partial q_{\rm b}}{\partial x} - \frac{\partial q_{\rm b}}{\partial x} = -\frac{\partial q_{\rm t}}{\partial x}
$$

where
$$
q_s = uch
$$
, $q_t = q_b + q_s$

Stream types

Sand-bed and gravel-bed alluvial streams

Sand-bed:

Surface median size $D_{50} \sim 0.1$ to 0.8 mm little sediment stratification dunes often prominent at flood flow bed slope S is $1x10^{-5} \sim 2x10^{-3}$

Gravel-bed surface D_{50} 10 ~ 200 mm surface $D_{50} \sim 1.5$ to 3 x substrate D_{50} dunes not common bed slope is $5x10^{-4}$ to $3x10^{-2}$

Regime diagram: τ^{*} versus explicit particle Reynolds number

$$
\mathbf{Re}_{\mathrm{p}} = \frac{\sqrt{RgD D}}{\mathrm{v}}
$$

Relations for the threshold of motion and fall velocity

Criterion for the threshold of motion (based on Shields, 1936, Brownlie, 1981)

$$
\tau_{\rm c}^*=0.5\,[0.22\ \text{Re}_{\rm p}^{-0.6}+0.06\cdot10^{(-7.7\,\text{Re}_{\rm p}^{-0.6})}\,]
$$

Criterion for the onset of suspension

$$
\frac{u_*}{v_s} = \frac{u_*}{\sqrt{RgD}} \frac{1}{R_f} = \frac{\sqrt{\tau^*}}{R_f} = 1
$$

$$
R_f = \frac{v_s}{\sqrt{RgD}}
$$

Relation for fall velocity (Dietrich, 1982)

$$
\mathbf{R}_{\rm f} = \exp \left\{-b_1 + b_2 \ln \left(\mathbf{R} \mathbf{e}_{\rm p}\right) - b_3 \left[\ln \left(\mathbf{R} \mathbf{e}_{\rm p}\right)\right]^2\right\}
$$

$$
-b_4 \left[\ln \left(\mathbf{R} \mathbf{e}_{\rm p}\right)\right]^3 + b_5 \left[\ln \left(\mathbf{R} \mathbf{e}_{\rm p}\right)\right]^4\}
$$

 $b1 = 2.891394$, $b2 = 0.95296$, $b3 = 0.056835$, $b4 =$ 0.002892 and $b5 = 0.000245$

Criterion for viscous effects: bankfull flow

Criterion for viscous effects (ripples)

$$
\frac{D}{\delta_v} \le 1 \qquad \delta_v = 11.6 \frac{v}{u_*}
$$

or thus

$$
\frac{1}{11.6} \frac{\mathbf{u}_{*} \mathbf{D}}{\mathbf{v}} = \frac{1}{11.6} \sqrt{\tau^{*}} \mathbf{R}_{ep} = 1
$$

Data for rivers at bankfull conditions

use normal flow approximation

$$
\tau_{b} = \rho C_{f} u^{2} = \rho g h S
$$

∴

$$
\tau^* = \frac{hS}{RD}
$$

where h refers to bankfull conditions

Regime diagram for stream type

Shields Regime Diagram

Relations for hydraulic resistance

Gravel-bed rivers in flood (when sediment is moved)

Bedforms often not important: $\tau_{\rm b}$ = $\tau_{\rm bs}$

Use Keulegan relation:

$$
C_f^{-1/2} = \frac{u}{u_*} = \frac{1}{\kappa} \ell n (11 \frac{h}{k_s})
$$

with
$$
k_s = n D_{s90}
$$
, $n = 2 \sim 3$
 $D_{s90} = \text{surface } D_{90} \text{ size}$

Sand-bed rivers

Bedforms often extremely important

Froude number **Fr** given by

$$
\mathbf{Fr} = \frac{u}{\sqrt{gh}}
$$

Relations for hydraulic resistance continued

Lower regime: dunes, prominent form drag

 $$

Upper regime: plane bed – antidunes, little form drag

 Fr > about 0.6

Einstein (1950) decomposition for normal flow: Split up τ_b C_f and h as

 $\tau_{\rm b} = \tau_{\rm bs} + \tau_{\rm bf}$, $C_{\rm f} = C_{\rm fs} + C_{\rm ff}$, $h = h_{\rm s} + h_{\rm f}$

 $(kin friction + form drag)$ at same u and S

 $\tau_{bs} = \rho C_{fs} u^2 = \rho g h_s S$ $\tau_{bf} = \rho C_{ff} u^2 = \rho g h_f S$

Engelund-Hansen (1967): skin friction & form drag:

$$
C_{\rm fs}^{-1/2} = 2.5 \ln(11 \frac{h_{\rm s}}{k_{\rm s}}) \qquad k_{\rm s} = 2.5 \,\mathrm{D}
$$

 $\tau_s^* = 0.06 + 0.4(\tau^*)^2$

Relations for hydraulic resistance continued

Solution is iterative Let S and D be given Guess h_s , get τ_s^* , then τ^* , then h, Get C_{fs} , then u, then

 $q_w = uh$

then

 $Q_w = q_w B$

where B denotes stream width

Method easily generalizes for *gradually varied flow:* for given h iterate to find C_f , use this value in

$$
u\frac{du}{dx} = -g\frac{dh}{dx} + gS - C_f\frac{u^2}{h}
$$

and integrate upstream (subcritical flow: **)**

Useful relations for total load

Engelund-Hansen (1967)

gD D $C_f q_t^* = 0.05 (\tau^*)^{5/2}$ $q_t^* = \frac{q_t}{\sqrt{R}d}$ $5/2$ $f \Psi_t = 0.03(t)$ $\Psi_t = \sqrt{R}$ $f_t^* = 0.05(\tau^*)^{5/2}$ q^{*}_t =

Use in conjunction with Engelund-Hansen resistance relation

Brownlie (1981)

Let $Q_{st}=q_tB$ where B = channel width and

$$
X = 1x10^6 \frac{\rho_s Q_{st}}{\rho Q_w + \rho_s Q_{st}}
$$

denote mass concentration in ppm Then

$$
X = 7115 c_a (F_g - F_{g0})^{1.978} S^{0.6601} (\frac{h}{D_{50}})^{-0.3301}
$$

where c_a = 1 for laboratory flumes and 1.26 for natural streams

Useful relations for total load continued

where

$$
F_g = \frac{u}{\sqrt{RgD_{50}}}
$$

\n
$$
F_{g0} = 4.596 (\tau_c^*)^{0.5293} S^{-0.1045} \sigma_g^{-0.1606}
$$

\n
$$
\tau_c^* = 0.22 \text{ Re}_p^{-0.6} + 0.06 \cdot 10^{(-7.7 \text{ Re}_p^{-0.6})}
$$

In the above σ_g = geometric standard deviation of bed sediment

> Use in conjunction with the Brownlie resistance relation:

$$
\frac{hS}{D_{50}}=0.3724\left(\widetilde{q}_{w}S\right)^{0.6539}S^{0.09188}\;\sigma_{g}^{0.1050}
$$

where

$$
\widetilde{q}_{w} = \frac{q_{w}}{\sqrt{gD_{50}}\ D_{50}}
$$

and q_w = water discharge per unit width