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ABSTRACT 

The most recent deglaciation resulted in a global sea level rise of some 120 m 

over approximately 12000 years.  In this Part I of two parts, a moving boundary 

numerical model is developed to predict the response of rivers to this rise.  The 

model was motivated by experiments at small-scale, which have identified two 

modes describing the transgression of a river mouth: autoretreat without 

abandonment of the river delta (no sediment starvation at the topset-foreset 

break) and sediment-starved autoretreat with abandonment of the delta.  In the 

latter case transgression is far more rapid, and its effects are felt much farther 

upstream of the river mouth.  The moving boundary numerical model is checked 

against experiments.  The generally favorable results of the check motivatate 

adaptation of the model to describe to describe the response of the much larger 
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Fly-Strickland River system, Papua New Guinea to Holocene sea level rise.  This 

is done in the companion paper, Part II. 

Keywords  rivers, deltas, transgression, sea level, autoretreat 

 

INTRODUCTION 

The last deglaciation resulted in a Pleistocene-Holocene global sea level rise of 

some 120 m.  Nearly all this rise was realized in a 12000 period between 18000 

and 6000 years BP.  The sea level curve of Bard et al. (1996) documenting this 

rise is given as Fig. 1.  Sea level rise likely had a dramatic effect on rivers near 

their mouths. 

The effect of eustatic sea level rise depends on the tectonic setting.  Along 

uplifting active margins, the rate of sea level rise relative to the margin itself was 

less than that predicted by the Bard Curve of Fig. 1.  Along slowly subsiding 

passive margins, however, the full brunt of Pleistocene-Holocene sea level rise 

was felt. 

The passive margin of the East Coast of the US provides an example.  The 

coastline from New Jersey to North Carolina shows a series of embayments or 

estuaries, including Delaware Bay, Chesapeake Bay and Albemarle Sound (Fig. 

2.)  Evidently the mouths of the rivers flowing into this region were drowned by 

sea level rise (e.g. Bratton et al., 2003).  The margin of the northern Gulf of 

Mexico near the Mississippi River delta, on the other hand, presents a very 

different picture (Fig. 3).  Rather than forming an embayment, the Mississippi 

River forms a delta which protrudes into the Gulf of Mexico.  Evidently the 
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Mississippi River was able to resist drowning due to sea level rise, or was able to 

recover from it more quickly than the rivers of Fig. 2. 

Why would rivers along the same margin of the same continent respond so 

differently to Post-glacial Pleistocene-Holocene sea level rise?  A key feature is 

likely to be sediment supply.  Most of the rivers of Fig. 2 flow from the 

Appalachian Mountains, a geologically old formation that no longer uplifts and 

produces little sediment.  The Mississippi River, on the other hand, drains a huge 

area that includes much of the geologically younger Rocky Mountains.  Evidently 

under the right conditions a sufficiently high sediment supply can prevent river 

mouths from being drowned due to sea level rise, or at least allow more rapid 

recovery after sea level stabilizes. 

 This paper (Part I) and its companion paper (Part II) are devoted to a 

study of the effect of sea level rise on rivers, not only at their mouths but farther 

upstream. 

 

GUIDE TO THE PAPERS 

This paper and its companion paper are long, and freely use the language of 

mathematics.  The goal, however, is to explain the process of river response to 

sea level rise in physical terms.  With this in mind, a brief summary is given as a 

guide. 

 The story begins in this paper with the small-scale experiments of Muto 

(2001) on the effect of sea level rise on one-dimensional alluvial deltas.  Under 

conditions of constant sea level, or stillstand, the model river developed an 
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upward-concave long profile and prograded into ever-deeper water at an ever-

decreasing, but always finite speed.  A different picture emerged when sea level 

was raised at a constant speed.  Initially both the delta topset-foreset break and 

toe (foreset-subaqueous basement break) continued to prograde seaward.  If sea 

level rise were continued for a sufficiently long time, however, at some point the 

delta topset-foreset break would start to transgress landward, even though the 

delta toe continued to move seaward.  Muto and Steel (1992, 1997) called this 

process “autoretreat.”  With a further continuation of sea level rise, at some point 

the sediment delivery to the topset-foreset break would drop to zero.  Muto 

(2001) referred to this as the point of “autobreak,” after which the delta front 

would be abandoned, and the shoreline would go into a rapid transgression, here 

termed “sediment-starved autoretreat.”  The result of this rapid transgression 

would be the formation of an embayment reminiscent of those shown in Fig. 2.  

The patterns observed in the experiments of Muto (2001) are summarized in Fig. 

4. 

 The experiments motivate the following question.  Do the experiments of 

Muto (2001) and the observed phenomenon of autoretreat shed light on the 

response of rivers to Pleistocene-Holocene sea level rise?  Blum and Törnqvist 

(2000) note that the issue of fluvial response to sea level change has been hotly 

debated, with some authors suggesting that the effects were likely localized near 

river mouths and others arguing that the effects extended far upstream.  In the 

same paper they argue for the importance of modeling in the study of the 

problem (see also Paola, 2000). 
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 A number of peculiarities of the physical modeling of Muto (2001) ensure 

that the results cannot be directly applied to the field.  Numerical modeling, 

however, can serve as a powerful bridge between laboratory experiments and 

rivers.  A numerical model can be thought of as a chest of drawers filled with 

information.  The contents of some of the drawers must be specific to the setting, 

i.e. either experimental or field.  The contents of most of the drawers, and the 

overall structure of the chest, however, do not change.  Such a model allows for 

effective upscaling of experimental results, as well as a reasonable means for 

determining whether experimental results have field applicability. 

 Here the basic structure of a numerical model is developed in the context 

of the experiments of Muto (2001).  The model is verified with the aid of 

experiments in Part I.  The model is then modified and adapted for application to 

large, low-slope sand-bed rivers in Part II.  It is applied therein to the Fly-

Strickland River system of Papua New Guinea (Dietrich et al., 1999).  The results 

of the modeling are combined with field information to demonstrate the following: 

a) The Fly-Strickland River System likely did go into autoretreat during 

Pleistocene-Holocene sea level rise, and is still recovering from the effects of this 

rise, and b) the effect of sea level rise likely propagated many hundreds of km 

upstream, to the point of causing migration of a gravel-sand transition. 

 

EXPERIMENTS OF MUTO 

Muto (2001) considered the simple one-dimensional configuration sketched in 

Fig. 5.  Water and sediment were introduced into a narrow channel with an 
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inerodible basement.  The basement had constant slope Sb and slope angle θbase 

= tan-1(Sb).  The basement slope was chosen to be sufficiently steep so that the 

sediment was transported over it under below-capacity conditions (partial 

exposure of the inerodible bed), with negligible sediment deposition.  The 

basement thus served as a simple model for a bedrock channel.  Ponded water 

was maintained at the downstream end, and was allowed to rise at the constant 

rate ξ& .  This ponding forced the flow to decelerate and the sediment to deposit 

out on the bed, forming an alluvial topset and an avalanching foreset (Figs. 4, 5).  

The transition from a bedrock reach over which sediment was transport under 

below-capacity conditions to an alluvial reach over which sediment was transport 

at capacity defined a moving boundary. 

 Before enumerating the experimental conditions in detail, it is useful to 

study Fig. 4, which shows the delta configuration at the end of one of the 

experiments.  It can be seen in the image that the both the shoreline (topset-

foreset break) and the delta toe (foreset-subaqueous basement break) first 

prograded (regressed).  As sea level rise continued, however, the shoreline 

started to move landward, or regress, even as the delta toe continued to 

prograde.  This change marked the start of autoretreat.  With continued sea level 

rise, the delta front was eventually abandoned, and the shoreline rapidly 

transgressed with vanishing sediment delivery to the delta.  Muto (2001) has 

termed the start of this process “autobreak.”  The rapid transgression after 

autobreak is here termed “sediment-starved autoretreat.”  During the course of 

the experiments, the bedrock-alluvial transition migrated upstream (Fig. 4). 
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 The experiments of Muto (2001) were conducted in a narrow tank with a 

length of 2 m and a depth of 1 m.  The width of the tank was either 5 or 10 mm 

for the experiments.  This configuration allowed for a simple one-dimensional 

delta without complications in the transverse direction.  (Muto and Steel, 2001, 

have, however, demonstrated the concept of autoretreat in the case of two-

dimensional deltas with transverse flare.)  The sediment used in the experiments 

was a uniform fine quartz sand with a median geometric mean size D of 0.212 

mm, a geometric standard deviation of 1.24 and a specific gravity near 2.65. 

The 29 experiments in Table 1 of Muto (2001) are considered here.  

Basement slope angle θbase varied from 11.9° to 31.2°; the angle of repose θr of 

the sediment was found to be near 35°.  Water discharge per unit width qw took 

one of the two values 2.18 cm2/s and 4.36 cm2/s.  Volume sediment feed per unit 

width qpsf (sediment + pores) ranged from 0.297 cm2/s to 1.093 cm2/s.  The rate 

of base level rise ξ& , which was held constant for the duration of each experiment, 

varied from 0.126 mm/s to 0.387 mm/s.  As can be seen in Fig. 4, a small 

amount of black carborundum powder was occasionally allowed to deposit to 

help visualize the structure of the deposit. 

 Any attempt at a mechanistic numerical model of the experiments of Muto 

(2001) requires an appropriate sediment transport relation.  The experiments are, 

however, peculiar in this regard.  More specifically, a) volume concentration of 

sediment in the slurry fed into the flume was very high, i.e. on the order of 10 

percent and b) flow depth was very low, i.e. on the order of 1 mm.  As a result, 

none of the many existing relations for transport of sand at either field or 
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laboratory scale (see e.g. Brownlie, 1981 for a compendium) were applicable to 

the data. 

 It might then be argued that because the sediment transport observed in 

the experiments fitted no existing transport relation, and specifically no relation 

known to be applicable to field-scale rivers, the experiments are of no value in 

explaining field-scale river response to sea level rise.  This is not the case at all.  

The experiments can be used to develop a crude but reasonable empirical 

sediment transport relation, which can in turn be used in the development of a 

numerical model of response to sea level rise.  Application of the numerical 

model to field-scale rivers then requires (among other modifications) a simple 

replacement of the empirical sediment transport relation appropriate for the 

experiments with a relation appropriate for natural rivers. 

The flow discharge per unit width is denoted here as qw; the volume 

sediment transport rate per unit width (sediment + pores) is denoted as qps.  Muto 

(2001) recorded the bed slope angle θu at the upstream end of the alluvial 

deposit, where the transition from bedrock to alluvial conditions is made.  The 

bed slope Su = tan(θu) thus corresponds to the slope at which the unit sediment 

feed rate qpsf is just transported at capacity by the unit flow discharge qw.  With 

this in mind a simple dimensionless relation of the following form is hypothesized 

for sediment transport.  Let S denote the local bed slope.  The sediment transport 

relation takes the form 

 n

w

ps S
q
q

α=         (1a) 
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where α is a dimensionless coefficient and n is an exponent.  Based on the data 

of Muto (2001), the following values of α and n were determined by regression, 

as shown in Fig. 6; 

 24.2n,3.12 ==α        (1b,c) 

The coefficient of correlation R2 is given in the figure.  While the scatter in Fig. 6 

is considerable and the form of Eq. (1a) is purely empirical and specific to the 

experiments in question, the relation captures the essential trends of sediment 

transport: increasing bed slope and increasing flow rate lead to an increase in the 

sediment transport rate. 

 The depths of flow in the experiments were on the order of one or two mm.  

While it was not possible to calculate precise values of the Froude numbers of 

the flow, estimates indicated that the flow was invariably in the range of either 

supercritical flow or subcritical flow with a Froude number not far below unity.  As 

a result, backwater effects could be neglected in analyzing the experiments. 

 

NUMERICAL FORMULATION AND IMPLEMENTATION: EXPERIMENTAL 

SCALE 

The numerical model described below is a descendant of the work of Swenson et 

al. (2000) and Kostic and Parker (2003a,b).  These models allow for two moving 

boundaries; the topset-foreset break (shoreline) and the foreset-bottomset break 

(foreset-subaqueous basement break in the present case).  The present analysis 

also allows a third moving boundary, i.e. the bedrock-alluvial transition point 

shown in Figs. 4 and 5. 
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 Parameters  The key parameters of the analysis are defined as follows 

and illustrated in Fig. 5.  Where x denotes downstream distance and t denotes 

time, x = sba(t) denotes the position of the bedrock-alluvial break, x = ss(t) 

denotes the position of the topset-foreset break (shoreline) and x = ssb(t) denotes 

the position of the foreset-subaqueous basement break.  These three positions 

describe the moving boundaries of the problem.  In addition, η denotes alluvial 

bed elevation, ηbase denotes elevation of the bedrock basement and Sb denotes 

the slope of the bedrock basement on which the sediment deposits, which was 

constant in the case of the experiments of Muto (2001).  The slope of 

avalanching onto the foreset is denoted as Sfore, where Sfore must satisfy the 

condition Sfore > Sb (Figs. 4 and 5).  In the experiments of Muto (2001) Sa was 

equal to the tangent of measured the angle of repose θr of about 35°.  The 

volume sediment transport rate per unit width (including pores) is denoted as qps.  

Base level (elevation of standing water at the downstream end) is denoted as ξ. 

The time rate of base level rise is denoted as ξ& ; this parameter was held 

constant in the case of the experiments of Muto (2001).  Alluvial bed slope S is 

given as 

 
x

S
∂
η∂

−=         (2) 

Sediment conservation  The Exner equation of sediment conservation 

can be written as 

 
x

q
t

ps

∂
∂

−=
∂
η∂         (3) 

where 
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)1(

qq
p

s
ps λ−
=         (4) 

In the above relation qps denotes the volume sediment transport rate per unit 

width including both sediment and pores, qs denotes the volume transport rate 

per unit width of sediment only and λp denotes the porosity of the bed deposit.  In 

the experiments under consideration the porosity was near 0.5. 

Upstream conditions  The delta builds out over a set basement with 

elevation profile ηbase(x) and constant slope Sb.  The alluvial zone of the delta 

begins at the bedrock-alluvial break with an elevation equal to that of the 

basement, and ends at the elevation of the standing water.  The boundary 

conditions on (1) at the upstream end of the alluvial zone are a sediment feed 

condition; 

 psfsxps qq
ba
=

=
        (5) 

where qpsf denotes the feed value of qps, and a continuity condition matching the 

bedrock zone smoothly with the alluvial zone; 

)]t(s[]t),t(s[)t( babasebaba η=η≡η      (6) 

Equation (5) is further reduced by taking the time derivative, resulting in the 

relation 

 
basabab

ba tSS
1s

∂
η∂

−
−=&       (7a) 

where the dot denotes a time derivative, Saba denotes the upstream alluvial bed 

slope at the bedrock-alluvial transition and Sb denotes the basement slope; 
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x

S,
x

S base
b

s
aba

ba
∂
η∂

−=
∂
η∂

−=      (7b,c) 

Interpretation  The physical meaning of (7a) can be explained as follows.  

In order for sediment to be transported under below-capacity conditions 

upstream of the bedrock-alluvial break, it is necessary for Sb to exceed the bed 

slope associated with at-capacity transport.  Since the sediment fed in from 

upstream first forms an alluvial bed at x = sba, the alluvial slope Saba at this point 

is the slope associated with the sediment feed rate qpsf.  Thus in order for the 

transition to exist it is necessary for Sb to exceed Saba.  As long as this condition 

is satisfied, (7a) ensures that: 

• under conditions of bed aggradation at the bedrock-alluvial transition 

(∂η/∂t > 0 at x = sba) the alluvium onlaps onto the bedrock and the 

bedrock-alluvial transition moves upstream, as illustrated in Fig. 7; and 

• under conditions of bed degradation at the bedrock-alluvial transition 

(∂η/∂t < 0 at x = sba) the alluvium is swept seaward and the bedrock-

alluvial transition moves downstream. 

 Shoreline condition  A continuity condition similar to (5) holds at the 

shoreline, where the water surface of the river is set equal to the elevation of 

standing water.  Denoting river depth as H(x, t), the condition becomes 

 t]t),t(s[H]t),t(s[ iss ξ+ξ=+η &      (8a) 

where ξi denotes an initial base level elevation.  In the case of the experiments of 

Muto (2001), flow depth is so small (on the order of 1 mm) that (8a) can be 

accurately approximated to 
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 t]t),t(s[ iss ξ+ξ=η≡η &       (8b) 

Taking the time derivative of the above relation, it is found that 

 ξ=
η &
dt

d s         (8c) 

 Interpretation  Condition (8c) pins the location of the topset-foreset break 

to the shoreline.  The topset-foreset break moves up or down in precise 

consonance with sea level.  The condition proves to be quite accurate in the 

context of the experiments of Muto (2001), but will be relaxed in considering field-

scale rivers. 

Conditions at the foreset-basement break  Beyond the end of the fluvial 

topset zone the sediment forms a subaqueous foreset that progrades at slope Sa 

by avalanching.  The bed profile on the foreset is 

 )sx(S sfores −−η=η        (9) 

over the zone ss < x < ssb.  In the experiments of Muto (2001) all of the sediment 

delivered to the topset-foreset break was deposited on the foreset, with no 

bottomset deposition (Fig. 5).  One boundary condition at the foreset-

subaqueous basement break is thus 

 0q
sbsxps =

=
        (10) 

In addition to the above relation, the following continuity condition holds at 

the foreset-basement break; 

 )]t(s[)ss(S]t),t(s[ sbbasessbforessb η=−−η=η    (11) 

The above equation can be differentiated with respect to time and reduced with 

(8c) to yield the result 



Part I of Manuscript submitted to Sedimentology, May, 2006 

 14

 ξ
−

+
−

= &&&
bfore

s
bfore

fore
sb SS

1s
SS

Ss      (12) 

 Interpretation  Equation (12) is most easily understood by considering the 

case of a delta prograding over a horizontal bed under conditions of constant sea 

level (Sb = 0, 0=ξ& ) in which case (12) reduces to 

 sb ss && =         (13) 

Under the stated conditions the foreset-basement break moves at the same 

speed as the topset-foreset break (shoreline), as illustrated in Fig. 8a.  A 

comparison of (12) and Fig. 8b shows that a subaqueous basement that 

becomes deeper offshore (Sb > 0) and rising base level ( )0>ξ&  act to cause the 

foreset-subaqueous basement break to prograde outward faster than the topset-

foreset break. 

Shock condition across the foreset  If the delta is prograding outward, 

the speed of migration ss&  of the shoreline is constrained by a shock condition 

that can be derived by integrating (3) across the foreset, i.e. from x = ss to x = ssb.  

The term ∂η/∂t on the foreset is obtained by differentiating (9) with respect to time 

and reducing with (8c), yielding the result 

bforesS
t

&& +ξ=
∂
η∂        (14a) 

Integrating (3) from ss to ssb and reducing with (10) and (14a) yields the shock 

condition 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ξ−

−
= &&

ssb

pss

fore
s ss

q
S

1s       (14b) 

where 
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 ]t),t(s[qq spspss ≡        (14c) 

describes the rate of sediment delivery to the topset-foreset break (Swenson et 

al., 2000; Kostic and Parker, 2003a). 

Interpretation  The height of the foreset ∆η is given as 

 )ss(S ssbfore −=η∆        (16a) 

(Fig. 7a), so that (14b) can be rewritten as 

 
fore

pss
s S

q
s ξ

−
η∆

=
&

&        (16b) 

In the absence of sea level rise, (16b) reduces to the simple form 

 psss qs =η∆&         (16c) 

That is, the delta front progrades (regresses) in consonance with the filling of the 

front by sediment delivered to the topset-foreset break, as illustrated in Fig. 8a.  It 

is seen from (16b) and Fig. 8b that rising sea level and a subaqueous basement 

that slopes seaward (Sb > 0) reduce the speed of delta progradation.  If sea level 

rises at a sufficiently high rate the effect of sediment delivery to the delta front 

can be counteracted, and the delta front can move landward (transgress).  This 

transgression defines the condition of autoretreat. 

Conditions for sediment starvation at the shoreline  Equation (14b) 

adequately describes the regression or transgression of the topset-foreset break 

as long as there is sediment supply to the delta front.  The experiments of Muto 

(2001) demonstrate, however, that if sea level rise at a constant rate is sustained 

for a sufficiently long time, the rate of sediment delivery eventually drops to zero 

and the delta front becomes starved of sediment.  Under such conditions the 
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shoreline enters a mode of rapid transgression here termed “sediment-starved 

autoretreat.”  Under such condition the boundary condition of (14b) must be 

replaced with the condition 

 0]t),t(s[q sps =        (17) 

It is now possible to specify regimes for delta development. 

1. The case )0s,0s( sbs >> &&  corresponds to a prograding delta, i.e. one for 

which both the shoreline and the foreset-basement break undergo 

regression. 

2. The case )0s,0s( sbs >< &&  corresponds to a delta with a shoreline 

undergoing autoretreat (transgression) but a foreset-basement break that 

continues to  prograde (regress).  The case of autobreak is reached when 

sbs&  declines to zero and the delta toe can no longer prograde due to 

sediment starvation. 

3. The case (ss < 0, ssb = 0) corresponds to sediment-starved autoretreat, for 

which the shoreline retreats (transgresses) and the subaqueous foreset 

becomes a dormant relict. 

For cases 1 and 2 the appropriate downstream conditions at the shoreline are 

(8c) and (14b). For case 3 the appropriate conditions at the shoreline become 

(8c) and (17). 

 Initial conditions  The initial bed consists of a very short alluvial reach of 

specified constant slope, followed by a commensurately short foreset.  The 

parameters sba and ss are assumed to take the initial values sba = 0, ss = ssi, so 
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that the initial length of the fluvial zone is ssi.  The initial elevation of the shoreline 

is taken to be ηsi = ξi = 0, and the initial bed profile of the fluvial zone is 

 sisifii sx0,)xs(S)x()0,x( <<−=η=η     (18a) 

where Sfi denotes the (constant) initial bed slope of the fluvial topset zone.  The 

initial profile of the subaqueous delta is given as 

 sbisisifore sxs,)sx(S)0,x( <<−−=η     (18b) 

where ssbi denotes the initial position of the foreset-subaqueous bottomset break.  

The initial height of the foreset is taken to be ∆ηi, so that ssbi and ssi are related 

by the geometric condition illustrated in Fig. 8a; 

 
fore

i
sisbi S

ss η∆
+=        (18c) 

The basement profile ηbase(x) must thus have slope Sb, attain the elevation 

Sfissi at x = 0 and attain the elevation -∆ηi at x = sb (Fig. 8).  This condition 

imposes a relation between ∆ηi and Sb; 

 

fore

b

sifib
i

S
S1

s)SS(

−

−
=η∆        (19) 

The basement profile, which is assumed to be invariant, is then given as 

 xSsS)x( bsifibase −=η       (20) 

 Flow of the calculation  The calculation proceeds as follows.  The 

alluvial domain is discretized into N+1 nodes, where the last of these is located at 

the shoreline.  For a given bed configuration S and qps are computed on the 

alluvial zone from (2) and (1), respectively.  The condition (5) is imposed in terms 

of an upstream ghost node.  The bed elevation one time step later is then 
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computed from a discretized version of (3).  The migration of the bedrock-alluvial 

break is computed from (7a).  In the event that qss > 0, i.e. there is supply of 

sediment to the shoreline, the migration of the shoreline and foreset-basement 

break are computed from (14b) and (12), respectively. 

 The aggradational nature of the problem forces qs to decline in x from the 

bedrock-alluvial break sba to the shoreline ss.  As the calculation proceeds, it can 

be expected that the shoreline value qpss eventually drops to zero, indicating 

autobreak and the onset of sediment-starved autoretreat.  In a discretized 

calculation, this is first realized in terms of a negative value of qss.  From this 

point on conditions (12) and (14b) must be abandoned.  The foreset-subaqueous 

basement break is no longer allowed to move, and the movement of the topset-

foreset break is now described by (17) instead of (14b).  The motion of the 

shoreline can be described by interpolating upstream from the current point ss at 

which qss < 0 to a new value of ss at which qss equals zero and (17) is satisfied. 

Transformation to moving boundary coordinates  The above problem 

is solved on a deforming grid using the coordinate transformation 

 tt,
)t(s)t(s

)t(sxx
bas

ba =
−

−
=       (21a,b) 

Note that the parameter x  is defined so that 0x =  at the bedrock-alluvial 

transition and 1x =  at the shoreline (topset-foreset break).  Equations (3), (5), 

(7a), (8b), (12), (14b) and (17) transform to the respective forms 

[ ]
x

q
ss

1
xss

s)x1(sx
t

ps

basbas

bas

∂
∂

−
−=

∂
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Equation (24) can be further reduced; evaluating (22) at 0x =  and substituting 

the results into (24), 
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 Discretization  The alluvial domain 1x0 ≤≤  is discretized into N intervals, 

each with length 

 
N
1x =∆         (30) 

bounded by N+1 nodes i = 1..N+1.  The upstream and downstream elevations 

are η1 and ηN+1, respectively.  The load nodes are staggered a distance of 0.5 

x∆  from the elevation nodes, as illustrated in Fig. 9.  The load node 1 

corresponds to a ghost node where the sediment feed rate qpsf is specified.  

Equation (22) is discretized to  

 [ ]
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where t∆  denotes the time step, all terms on the right-hand side of (31) are 

evaluated at time t  and bed slope Si at the ith node is discretized as 

 

⎪
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x2ss
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S
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1i1i

bas
i      (32) 

That is, (31) is used to calculate the change in bed elevation over one time step 

t∆  for nodes i = 1..N.  The change in bed elevation at node i = N+1 is given by 

the boundary condition (25) . The sediment transport rate at node 1 is computed 

via (23); 

 psf1,ps qq =         (33) 

The sediment transport rates qps,i , i = 2..N+1 are computed as functions of slope 

iŜ  according to (1), where 

 
xss

1Ŝ i1i

bas
i ∆

η−η
−

= −        (34) 

Note that according to (32) a central difference scheme is used to compute bed 

slope Si at all nodes except node 1 in (31), whereas the backward difference 

scheme of (33) is used to compute the bed slope iŜ  employed in the 

computation of the bedload transport rate qps,i at the ith node. 

Conditions (29), (27) and (26) are easily implemented in discretized form 

to determine bas& , ss&  and sbs& .  For example, (29) and (27) discretize to the 

following respective forms: 
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Once sba, ss, ssb, bas& , ss&  and sbs&  are all known at a given time t , the values for 

sba, ss and ssb at the next time step are computed as 

 tsss babattba ∆+=
∆+

&        (36a) 

tsss sstts ∆+=
∆+

&        (36b) 

tsss sbsbttsb ∆+=
∆+

&        (36c) 

 Condition (28) is implemented via interpolation.  It is seen from (1) that the 

sediment supply rate to the shoreline qpss vanishes when the bed slope vanishes 

there.  Suppose that at some stage in the calculation the shoreline bed slope 

1NŜ +  barely becomes negative.  As long as the time step is sufficiently short NŜ  

can be expected to be positive.  As a result the position ss,noload corresponding to 

vanishing load at which (28) is satisfied can be estimated as 
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The value ss,noload is used as the value of ss in the next time step, and ηi for the 

next time step is computed via (31) using the following estimate of ss& ; 
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TEST OF MODEL PERFORMANCE 
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 A sample calculation is given in Fig. 10.  The calculation is based on the 

second experimental run in Table 1 of Muto (2001), for which θbase = 12.5°, ξ&  = 

0.151 mm/s, qpsf = 0.904 cm2/s and qw = 4.36 cm2/s.  The shoreline initially 

prograded, or regressed.  It next entered autoretreat, however, and began to 

slowly transgress.  Eventually the sediment transport rate at the shoreline 

dropped to zero, and the shoreline commenced rapid sediment-starved 

autoretreat.  The pattern of development was the same as that illustrated in Figs. 

4 and 5. 

 The following parameters are chosen in order to compare the performance 

of the numerical model against all 29 runs of Table 1 of Muto (2001).  The length 

of the fluvial topset at the end of the run Lae is defined as 

 )t(s)t(sL endbaendsae −=       (37) 

where tend denotes the end run time.  Let sauto and tauto denote the distance to the 

point at which autobreak occurs and the time of autobreak, respectively.  The 

elevation of the autobreak point above the bedrock basement ηab is given as 

 )s()t,s( autobaseautoautoab η−η=η      (38) 

In Figs. 11, 12 and 13 computed values of Lae, tauto and ηab are compared against 

measured values for all the runs of Table 1 of Muto (2001).  While the agreement 

is by no means perfect, the numerical model captures the basic trends of the 

experiments without gross error.  The discrepancies are most likely due to the 

inadequacies of the rather simple sediment transport formulation of (1), and in 

particular to the lack of a threshold condition for the transport of sediment therein. 
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CONCLUSIONS 

 In summary, the basic features of the experiments of Muto (2001) are 

captured by the moving boundary model.  Most importantly, the model captures 

the transgressive autoretreat of the shoreline (topset-foreset break) driven by 

base level rise, including slow transgression with some sediment delivery to the 

delta front, autobreak, and subsequent rapid shoreline transgression and 

abandonment of the delta front.  The numerical model is adapted to field 

conditions in Part II (Parker et al., submitted) and applied as a tool to study the 

effect to sea level rise on a large river in Papua New Guinea. 
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NOMENCLATURE 
Symbol Meaning     Dimensions 
         (L length, M mass, T time,  
         (1 dimensionless) 
D  Characteristic (median or geometric mean) L 
   sediment grain size 
i  Index denoting either the ith spatial node or 1 
   the initial value of a parameter 
Lae  Length of the fluvial topset at run end in   L 
   the experiments of Muto (2001) 
N  Number of intervals in spatial discretization 1 
qps  = qs/(1 - λp), volume sand transport rate per L2T-1 
   unit width including pores 
qpsf  Volume sand feed rate per unit width  L2T-1 
   including pores 
qpss  Value of qps at shoreline    L2T-1 
qs  Volume sand transport rate per unit width L2T-1 
   excluding pores 
qw  Water discharge per unit width   L2T-1 
R  = (ρs/ρ - 1), submerged specific gravity of  1 
   sediment (~ 1.65 for quartz) 
S  = - ∂η/∂x, local alluvial bed slope   1 
Saba  Alluvial slope at bedrock-alluvial transition 1 
Sb  Constant basement slope of the    1 
   experiments of Muto (2001) 
Sfi  Initial slope of fluvial region   1 
Sfore Foreset slope (assumed constant here)  1 
Su  Alluvial bed slope at bedrock-alluvial transition 1 
sauto  Distance to the point where autobreak occurs L 
   in the experiments of Muto (2001) 
sba  Position of bedrock-alluvial transition  L 

bas&   Migration speed of bedrock-alluvial transition LT-1 
ss  Position of shoreline    L 
ssi  Initial value of ss     L 
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ss&   Migration speed of shoreline   LT-1 
ssb  Position of foreset-subaqueous basement L 
   break 
ssbi  Initial value of ssb     L 

sbs&   Migration speed of foreset-subaqueous  LT-1 
   break 
t  Time       T 
tauto  Time to autobreak in experiment of Muto  T 
   (2001) 
tend  Time of end of run in experiments of Muto T 
   (2001) 
t   Moving boundary time coordinate given by T 
   (21b) 
x  Downchannel streamwise coordinate  L 
x   Dimensionless moving boundary spatial  1 
   coordinate given by (21a) 

x∆   Interval length in discretization of x   1 
t∆   Step length in time t     T 

∆η  Elevation drop across the foreset   L 
∆ηi  Initial value of ∆η     L 
η  Local alluvial bed elevation    L 
ηab  Elevation of the autobreak point above  L 
   basement at time of autobreak in 
   experiments of Muto (2001) 
ηbi  Initial elevation of the foreset-subaqueous L 
   basement break 
ηbase Local basement elevation    L 
ηs  Bed elevation at the shoreline   L 
λp  Porosity of deposit     1 
θbase Angle of inclination of basement slope  1 (radians or degrees) 
   experiments of Muto (2001) 
θr  Angle of repose of sediment   1 (radians or degrees) 
θu  Alluvial bed slope angle at bedrock-alluvial 1 (radians or degrees) 
   transition 
ρ  Density of water     ML-3 
ρs  Density of sediment     ML-3 
ξ  Sea level or elevation of standing water  L 
   (base level) 
ξi  Initial value of ξ     L 
ξ&   Rate of rise of sea level or elevation of  LT-1 
   standing water 



Part I of Manuscript submitted to Sedimentology, May, 2006 

 27

  



Part I of Manuscript submitted to Sedimentology, May, 2006 

 28

 

 
Figure 1.  The solid line (Bard Curve) denotes a simplified version of the curve of 
eustatic sea level relative to present-day conditions presented by Bard et al. 
(1996).  The dashed line denotes the curve used in two applications of the 
numerical model, i.e. Cases B and C, with a  constant sea level rise of 10 mm/a 
for 12000 years. 
 

 
Figure 2.  Satellite view of the Eastern Seaboard of the United States from 
Albemarle Sound (bottom, south) to Delaware Bay and New Jersey (top, north).  
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The image is from the NASA web site, https://zulu.ssc.nasa.gov/mrsid/.  Note the 
presence of numerous drowned river valleys. 
 

 
Figure 3.  Satellite image of the Mississippi River delta.  Image from NASA.  Note 
how the Mississippi Delta protrudes into the Gulf of Mexico. 
 

 
Figure 4.  Annotated image from the end of one of the experiments of Muto 
(2001).  Flow was from left to right. 
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Figure 5.  Sketch of delta evolution observed by Muto (2001) under conditions of 
rising sea level 
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Figure 6.  Sediment transport relation determined empirically from the 
experiments of Muto (2001). 
 

 
Figure 7.  Diagram illustrating continuity condition at the bedrock-alluvial 
transition. 
 

 
Figure 8a.  Illustration of delta evolution over a horizontal subaqueous basement 
and with constant base level. 
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Figure 8b.  Illustration of delta evolution as it progrades over a seaward-sloping 
subaqueous basement, and with rising sea level.  Both features act to slow down 
delta progradation. 
 

 
Figure 9.  Illustration of the grid used in the numerical model of the experiments 
of Muto (2001). 

 
Figure 10.  Sample numerical results based on an experiment of Muto (2001) for 
which θbase = 12.5°, ξ&  = 0.151 mm/s, qpsf = 0.904 cm2/s and qw = 4.36 cm2/s 
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Figure 11.  Comparison of computed versus measured values of Lae, where Lae 
denotes the length of the alluvial reach from bedrock-alluvial transition to 
shoreline at the end of the run, for the experiments of Muto (2001) 
 

 
Figure 12.  Comparison of computed versus measured time to autobreak tauto for 
the experiment of Muto (2001). 
 
 
 
 
 
 
 
 
 
 
 
 

0

500

1000

1500

2000

0 500 1000 1500 2000

Measured tauto sec

C
om

pu
te

d 
t a

ut
o s

ec

0

50

100

150

0 50 100 150

Measured Lae cm

C
om

pu
te

d 
L a

e c
m



Part I of Manuscript submitted to Sedimentology, May, 2006 

 34

 
Figure 13.  Comparison of computed versus measured values of ηab for the 
experiments of Muto (2001), where ηab denotes the elevation of the topset-
foreset break (shoreline) above the bedrock basement at the end of the run. 
ect of river scale. 
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