Dam Removal Express Assessment Models (DREAM). Part 1: Model development and validation

YANTAO CUI, Hydraulic Engineer, Stillwater Sciences, 2532 Durant Avenue, Berkeley, CA 94704, USA
GARY PARKER, Professor, St. Anthony Falls Laboratory, University of Minnesota, Mississippi River at Third Avenue S.E., Minneapolis, MN 55414, USA
CHRISTIAN BRAUDRICK, Geomorphologist, Stillwater Sciences, 2532 Durant Avenue, Berkeley, CA 94704, USA
WILLIAM E. DIETRICH, Professor, Department of Earth and Planetary Sciences, University of California, 301 McConic Hall, Berkeley, CA 94720, USA
BRIAN CLUER, Geomorphologist, National Marine Fisheries Service, 777 Sonoma Avenue, Santa Rosa, CA 95404, USA

ABSTRACT

Many dams have been removed in the recent decades in the U.S. for reasons including economics, safety, and ecological rehabilitation. More dams are under consideration for removal; some of them are medium to large-sized dams filled with millions of cubic meters of sediment. Reaching a decision to remove a dam and deciding as how the dam should be removed, however, are usually not easy, especially for medium to large-sized dams. One of the major reasons for the difficulty in decision-making is the lack of understanding of the consequences of the release of reservoir sediment downstream, or alternatively the large expense if the sediment is to be removed by dredging. This paper summarizes the Dam Removal Express Assessment Models (DREAM) developed at Stillwater Sciences, Berkeley, California for simulation of sediment transport following dam removal. There are two models in the package: DREAM-1 simulates sediment transport following the removal of a dam behind which the reservoir deposit is composed primarily of non-cohesive sand and silt, and DREAM-2 simulates sediment transport following the removal of a dam behind which the upper layer of the reservoir deposit is composed primarily of gravel. Both models are one-dimensional and simulate cross-sectionally and reach averaged sediment aggradation and degradation following dam removal. DREAM-1 is validated with a set of laboratory experiments; its reservoir erosion module is applied to the Lake Mills drawdown experiment. DREAM-2 is validated with the field data for a natural landslide. Sensitivity tests are conducted with a series of sample runs in the companion paper, Cui et al.
[submitted(c)], to validate some of the assumptions in the model and to provide guidance in field data collection in actual dam removal projects. The models can be used in dam removal projects for the evaluation of different sediment management strategies, and thus to facilitate the decision-making process.

1 Introduction

Citing the U.S. Army Corps of Engineers, the Bureau of Reclamation, the Tennessee Valley Authority and other U.S. sources, The Guidelines for Retirement of Dams and Hydroelectric Facilities [the Guidelines hereafter, ASCE, 1997] state that there were more than 75,000 dams in the U.S. in 1996. The majority of these dams were built before the late 1960s, and are now approaching or exceeding their average designed life expectancy of about 50 years. In light of the aging of these facilities and in light of economic and ecological considerations, some dams have been decommissioned and removed, and many more will be removed in the future. As pointed out in the Guidelines, the key element in a dam removal project is usually sediment management, which normally constitutes more than a third of the total dam removal cost. The Guidelines listed three sediment management options associated with dam removal: river erosion, mechanized removal, and stabilization, each with different advantages and disadvantages. Overall, mechanized removal has the least impact on the downstream geomorphic/ecological system but has the highest cost. In contrast to mechanized removal, the river erosion option has the greatest downstream impact but the lowest cost. Within each individual option, there may be many implementation alternatives, and each of them may have different downstream impacts and project costs. In the river erosion option, for example, the dam can be partially or completely removed by either a one-shot removal (i.e., to remove the entire dam before reservoir sediment deposit is allowed to erode and transport downstream) or a staged removal. The choice of a removal method among available options and the variety of design alternatives within an option are largely determined by the predicted downstream impacts of the sediment release, as well as the confidence level of the predictions.

Because dam removal is a relatively recent issue, and because of the complexities involved in sediment transport following dam removal, a sediment transport model designed to simulate dam removal and the eventual fate of the reservoir sediment has not been available to the public. Instead, engineers and geomorphologists have been using sediment transport models that were developed for other purposes to address the problem. For example, HEC-6, in combination with
several other reservoir erosion models, was used to model the proposed removal of the Elwha and Glines Canyon Dams on the Elwha River, WA [Bureau of Reclamation 1996b]. The problem with such a modeling exercise is that the sediment transport model used for simulation, HEC-6 in this particular case, was not developed for simulation following the removal of a dam, and thus is not capable of simulating the steep slope in the vicinity of the dam immediately following removal. A practice modelers have adopted to overcome such problems is to model the reaches upstream and downstream of the dam separately. That is, reservoir erosion upstream of the dam is simulated independently, and the results are used to define the upstream boundary condition for the simulation of the downstream reach [e.g., Bureau of Reclamation 1996b]. This practice, however, is valid only if part of the dam is still in place and the upstream and downstream reaches of the dam are still separated by the remaining portion of the dam. That is, the combined models cannot be used for the simulation of a one-shot removal, nor can they be used for simulation of the later stages in a staged removal. In such cases, the deposition downstream of the dam greatly affects the erosion and transport of sediment in and upstream of the reservoir, and thus the independent simulation of reservoir erosion upstream of the dam becomes invalid.

To simulate the potential removal of Soda Springs Dam on the North Umpqua River, OR, and Marmot Dam on the Sandy River, OR, Stillwater Sciences developed two customized numerical models that specifically address the sediment transport issues following the removal of the dams [Stillwater Sciences 1999, 2000, Cui and Wilcox in press] based on the sediment pulse work of Cui and Parker [submitted]. In the Soda Springs Dam case, the reservoir deposit is composed primarily of sand and silt, and the river downstream of the dam is a high-gradient bedrock-dominated gravel-bedded channel [Stillwater Science 1999]. In the Marmot Dam case, the reservoir deposit is stratified, with the upper layer of the deposit composed of a mixture of gravel and sand, and the lower layer composed of primarily sand and silt. The Sandy River downstream of Marmot Dam is a high-gradient bedrock-dominated gravel-bedded river, with a gradual transition further downstream to a lower-gradient gravel-bedded river [Stillwater Sciences 2000, Cui and Wilcox in press].

The Dam Removal Express Assessment Models (DREAM) presented in this paper are modified from the Soda Springs Dam and the Marmot Dam models: DREAM-1 is designed for the simulation of sediment transport following the removal of a dam behind which the reservoir
deposit is composed primarily of non-cohesive sand and silt, and DREAM-2 is designed for the simulation of sediment transport following the removal of a dam behind which the upper layer of the reservoir deposit is composed primarily of gravel. Channel characteristics can include any combination of bedrock, gravel-bedded and sand-bedded rivers for a DREAM-1 simulation, and a combination of bedrock and gravel-bedded rivers for a DREAM-2 simulation.

The Marmot Dam removal model [Cui and Wilcox, in press] differs from the generic model of Cui and Parker [submitted] in that Cui and Parker [submitted] assumes gravel-bedded without geological controls such as bedrock outcrops while Cui and Wilcox [in press] allows such geological controls. The implication is that the pre-disturbance bedload transport in Cui and Parker [submitted] is at capacity while the pre-dam-removal condition in Cui and Wilcox [in press] can be under-capacity. The other major difference between Cui and Parker [submitted] and Cui and Wilcox [in press] is that Cui and Parker [submitted] considers only bedload transport, while the Marmot Dam removal model [Cui and Wilcox, in press] considers the transport of both gravel and sand. In addition, Cui and Parker [submitted] uses only one discharge station for input to the model and assumes that the discharge at any cross section is proportional to the local drainage area. The Marmot Dam removal model [Cui and Wilcox, in press] allows any number of hydrologic stations, and the discharge at each cross section can be linked to one of those stations.

The major improvement of DREAM-1 over the Soda Springs Dam removal model [Stillwater Sciences 1999] is that the current model assumes trapezoidal cross sections in the reach upstream of the dam, and allows channel widening due to the erosion of both banks during the period of downcutting of the reservoir deposit, while the Soda Springs Dam removal model [Stillwater Sciences 1999] assumes set rectangular cross sections for the entire river reach. This improvement is also reflected in DREAM-2 presented in this paper as compared to the Marmot Dam removal model [Cui and Wilcox, in press]. In addition, the gravel and sand transport models are built as an integrated model in DREAM-2, although gravel and sand transport capacities are still calculated separately with their respective equations, representing another major improvement over the Marmot Dam removal model [Cui and Wilcox, in press], in which the gravel model is run independently and the resulting fine sediment erosion from the reservoir deposit is used as input to the sand model. The integration of gravel and sand transport into a single model allows the fine sediment generated from gravel abrasion to be accounted for. The
integrated model also allows accounting for the fine sediment deposited in the interstices of gravel deposits.

In addition to these major improvements of the current models over the previous models, this paper and the companion paper, Cui et al. [submitted(c)] focus on different issues of interest from a) those in Cui and Parker [submitted], which focuses on the relative importance of gravel abrasion on the evolution of gravel pulses in mountain rivers, and b) those in Cui and Wilcox [in press], which presents a case study of a dam removal project. This and the companion paper, Cui et al. [submitted(c)], focus on: a) the development of the two models and the underlying assumptions, with special attention to the reservoir erosion module; (b) validation of the models with field and laboratory data; and (c) sensitivity tests to major built-in and end-user parameters, which provide guidance for future model applications and field data collection, and provide a reference for development of similar models in the future.

2 Hypotheses on the Morphologic Adjustments and Sediment Transport Processes Following Dam Removal

Many small dams have been removed in the U.S. and around the world with very little documentation. Removal of medium- to large- sized dams is very rare, and no documentation of morphological adjustments and sediment transport processes associated with such cases was found. In order to develop the Dam Removal Express Assessment Models (DREAM), we hypothesized the following morphologic adjustments and sediment transport processes following a dam removal.

Consider a dam, behind which the reservoir area is either fully or partially filled with non-cohesive sediment, which is in the process of being analyzed for removal. To begin the dam removal process, as much water as possible is drained out of the reservoir during the low flow season and a cofferdam is constructed at a certain distance upstream of the dam to divert the flow away from the dam. With the protection from the cofferdam, the sediment between the dam and the cofferdam is excavated to expose and eventually remove the dam. The dam can be a one-time complete removal (one-shot removal), a partial removal across the dam, or the opening of a notch at the dam. The cofferdam is then artificially or naturally breached at a design discharge after the dam and other facilities are physically removed. In case of opening a notch on the dam, it is assumed that no flow control structure is installed on the notch, i.e. free-surface flow is maintained at all times. The regulated (gated) notch such as in one of the options for the
the current model without site-specific modification to the code.

Note that the sediment deposit in the reservoir following the removal of the dam and before the breaching of the cofferdam has steep slope facing downstream (often at the angle of repose), as demonstrated in the sketch in Figure 1a. The sketches in Figure 1 are vertically exaggerated, and as a result, the above slope appears much steeper than the angle of repose. This steep slope allows for quick erosion of the reservoir sediment and its subsequent deposition downstream as a fan-delta as soon as the cofferdam is breached. The rapid downcutting of the reservoir deposit very likely drains the flow from any existing secondary channels, thus preventing further downcutting and leaving them perched. As a result, it is very likely that only one channel is formed in the reservoir deposit following the removal of the dam. Due to the lack of field data, it is not clear how wide a channel develops in the reservoir reach. It is reasonable, however, to assume that the active channel will have a geometry similar to that found in the reach immediately downstream of the dam. Also because the channel will tend to cut down rapidly, it will very likely experience relatively minor lateral migration. Depending on the relative widths of the reservoir deposit and the active channel, part of the reservoir deposit may not be eroded and transported downstream even if the channel reaches its pre-dam gradient. This deposit remains in the form of terraces. Once the channel reaches a relatively stable gradient and the degradation rate falls off, the channel may begin to migrate laterally and to erode these terraces. Figure 1b shows a sketch of a river after dam removal that is still adjusting its gradient.

In case the upper layer of the reservoir deposit is composed of primarily coarse sediment (gravel, pebbles, and boulders), it is reasonable to assume that the erosion of the reservoir deposit is governed by gravel transport because of the relatively smaller transport capacity of coarse sediment compared to that of sand.

The above hypotheses are incorporated into the Dam Removal Express Assessment Models (DREAM) presented below. The possible lateral migration once the channel reaches a relatively stable gradient, however, is not implemented in the models.
3. Governing Equations

A unique feature of sediment transport modeling following dam removal is the steep slope in the vicinity of the dam shortly after dam removal. Simulation with a steep slope requires that the model be capable of simulating sub-critical, super-critical, and transient flows.

Many existing numerical models of mobile-bed open-channel flow are equipped with the ability to simulate of sub-critical, super-critical, and transient flows [e.g. Bhallamudi and Chaudhry 1991; Rahuel et al. 1989; Holly and Rahuel 1990a,b; Li et al. 1988; US Army Corps of Engineers 1993; Cui et al. 1996, submitted(b); Cui and Parker, 1997, submitted]. With appropriate modifications, those models should be capable of simulating sediment transport processes following a dam removal. The same procedure as used in Cui and Parker [submitted] and Cui and Wilcox [in press] is applied in the flow simulation described below.

For the purpose of flow calculation, the channel is assumed to be rectangular with width equal to the local bankfull width, and flow parameters are calculated with a combination of a standard backwater calculation and the quasi-normal flow assumption,

\[
\frac{dh}{dx} = \frac{S_0 - S_r}{1 - F^2}, \quad F < 0.9
\]

(1a)

\[
S_0 = S_r, \quad F \geq 0.9
\]

(1b)

in which \(h\) denotes water depth; \(x\) denotes downstream distance; \(S_0\) denotes channel bed slope; \(S_r\) denotes friction slope; and \(F\) denotes the Froude number;

\[
S_0 = -\frac{\partial(\eta_b + \eta_g + \eta_s)}{\partial x}
\]

(2)

\[
F^2 = \frac{Q_w^2}{gB^2h^3}
\]

(3)

in which \(\eta_b\) denotes the elevation of non-erodible material such as bedrock; \(\eta_g\) denotes the thickness of the gravel deposit; \(\eta_s\) denotes the thickness of any sand deposit on top of gravel deposit or the non-erodible material; \(Q_w\) denotes water discharge; \(g\) denotes acceleration of gravity; and \(B\) denotes bankfull channel width. It should be noted that bankfull channel width upstream of the dam site follow dam removal is assumed to be equal to the average bankfull width within a short distance downstream of the dam. The friction slope \(S_r\) will be discussed later in conjunction with the discussion of sediment transport equation. A sketch illustrating
these definitions is given as Figure 2. It needs to be clarified that the thickness of gravel deposit, \(\eta_{gs} \), should be considered as constant in a DREAM-1 simulation based on the assumption that the aggradation and degradation of the gravel bed is relatively slow compared to the transport of sand. This assumption is not used in DREAM-2, which calculates gravel as well as sand transport.

Cui and Parker [1997] show that the quasi-normal assumption provides a good approximation of the full backwater equations for flows with high Froude number. Cui and Parker [submitted] use this finding to simulate the evolution of sediment pulses in mountain rivers. In Cui and Parker [submitted], the flow is calculated with the backwater equation whenever local Froude number is lower than 0.75, and with quasi-normal assumption otherwise. Their simplified treatment enables them to model the sub-critical flow upstream of the sediment pulse, the super-critical flow at the steep downstream face of the sediment pulse, and the transient flows linking the two states.

This simplified treatment recognizes the fact that sediment transport simulations are almost always performed at a much larger grid scale than the scale of the transient flow so that it is not necessary to capture the exact location of transient features such as hydraulic jumps. For example, the typical grid for a one-dimensional sediment transport simulation is on the order of two channel widths or larger. The scale of a hydraulic jump in the mean flow transition from super-critical flow to sub-critical flow, however, is usually less than the channel width. With this in mind, the exact location of the hydraulic jump is not important in a one-dimensional sediment transport simulation, as long as one can predict the two grid points between which the hydraulic jump is located, as demonstrated in Figure 3.

Extensive comparisons of the simplified treatment with more complicated methods by the first author indicate that the simplified treatment produces results almost identical to that from the other methods. Such an example is presented in Figure 4 for the simulation of Run 2 of the St. Anthony Falls Laboratory (SAFL) downstream fining experiments reported by Paola et al. [1992], Seal et al. [1997] and Toro-Escobar et al. [1996], and previously simulated by Cui et al. [1996] and Cui and Parker [1997]. Details of the SAFL downstream fining experiments and the numerical simulations by Cui et al. [1996] and Cui and Parker [1997] are not discussed here. Of interest here is the fact that Cui et al. [1996] applied a time-relaxation method to solve the full St. Venant equations in order to solve the transient flow, and Cui and Parker [1997] applied a shock-
fitting method to locate the exact location of the hydraulic jump. Figure 4 indicates that the simplified treatment produced results almost identical to those of the more complicated treatments of Cui et al. [1996] and Cui and Parker [1997]. Comparisons for other SAFL downstream fining runs produced results similar to that shown in Figure 4 and are not presented here.

It should be noted that in order to achieve relatively high accuracy in flow calculation, the coarse grid shown in Figure 3 may have to be divided into a number of sub-grids for the backwater calculation. The number of sub-grids within a particular grid is dependent on the ratio of the grid length to water depth, Froude number, and local channel bed slope. Details about the sub-grids are not discussed here because the implementation of the technique is more of a trial-and-error exercise than a solid theory. It is useful, however, to point out that increases in the ratio of grid length to water depth, Froude number, or local channel bed slope should normally result in an increase in the number of sub-grids within the grid in order to achieve a similar relative accuracy at all the grid points as illustrated in Figure 3.

For the purpose of sediment mass conservation calculations, the channel downstream of the dam is assumed to have the same rectangular cross-sections as those used in flow calculation. The Exner equations of sediment continuity for the reach downstream of the dam used here have been modified from Cui and Parker [submitted], which in turn have their origins in continuous forms in Parker [1991a,b]. Similar but simpler forms of the Exner equations have been used in Parker [1990b], Cui and Parker [1998] and Cui and Wilcox [in press].

Since sediment transport of gravel is computed on a grain size-specific basis, it is first necessary to specify the discretization of the gravel grain size distribution. Here “gravel” means gravel and coarser sizes. Grain size D can be equivalently characterized in terms of the (base-2) logarithmic ψ-scale;

$$\psi = -\phi = \log_2(D)$$ \hspace{1cm} (4)

In the above relation ϕ denotes the ϕ-scale familiar to sedimentologists. Gravel grain size distributions are discretized into N bins $j = 1...N$ bounded by $N + 1$ grain sizes $D_1...D_{N+1}$ ($\psi_1...\psi_{N+1}$) progressing from smaller to larger size with increasing j. Here D_1 always corresponds to 2 mm (i.e. a value of ψ_1 of 1), i.e. the border between sand and gravel. The jth grain size range is bounded by the sizes D_j and D_{j+1}, and has the characteristic size
The fraction of the deposit that is gravel is denoted as \(f_g \) and the fraction that is sand is denoted as \(f_{sa} \). The two need not add up to unity due to the possible presence of silt in the deposit. The fractions of the gravel in the surface layer of the stream and the bedload in the jth grain size range are denoted respectively as \(F_j \), and \(p_j \), where both are normalized to sum to unity over all gravel sizes. The formulation presented below also uses surface fractions \(F'_j \) that have been adjusted according to Parker [1991a] to reflect exposed surface area available for abrasion;

\[
F'_j = \frac{F_j}{\sqrt{D_j}}
\]

The Exner equation for the total gravel load (bedload) for the reach downstream of the dam is

\[
(1 - \lambda_p) f_g B \frac{\partial \eta_g}{\partial t} + \frac{\partial Q_g}{\partial x} + \beta Q_g \left(2 + \frac{1}{3/n(2)} \frac{p_1 + F'_1}{\psi_2 - \psi_1} \right) = q_{gf}
\]

The Exner equation for gravel (bedload) of an individual grain size range (the jth size range) for the reach downstream of the dam is

\[
(1 - \lambda_p) f_g B \left(\frac{\partial (L_s F_j)}{\partial t} + f_{bj} \left(\frac{\eta_g - L_s}{\partial t} \right) \right) + \frac{\partial (Q_g p_j)}{\partial x} + \beta Q_g \left(p_j + F'_j \right) + \\
\frac{\beta Q_g}{3/n(2)} \left(\frac{p_j + F'_j}{\psi_{j+1} - \psi_j} - \frac{p_{j+1} + F'_{j+1}}{\psi_{j+2} - \psi_{j+1}} \right) = q_{gf}'
\]

The Exner equation for sand for the reach downstream of the dam is

\[
(1 - \lambda_p) B \left(\frac{\partial \eta_s}{\partial t} + f_{sa} \frac{\partial \eta_g}{\partial t} \right) + \frac{\partial Q_{sa}}{\partial x} - \frac{\beta Q_g}{3/n(2)} \frac{p_1 + F'_1}{\psi_2 - \psi_1} = q_{sf}
\]

In the above relations \(\lambda_p \) denotes the porosity of the deposit; \(t \) denotes time; \(Q_g \) denotes volumetric transport rate of gravel (bedload); \(x \) denotes downstream distance; \(\beta \) denotes volumetric abrasion coefficient of gravel (bedload); \(q_{gf} \) denotes lateral gravel (bedload) supply rate per unit distance (i.e., volume of bedload supplied to the river per unit time per unit distance from tributaries and bank erosion); \(L_s \) denotes the active layer (surface layer) thickness, which is assumed to be a constant value of 0.5 m for simplicity and is discussed in Run 2 of the sample
runs in the companion paper, Cui et al. [submitted(c)]; \(q_{g/j} \) denotes lateral gravel (bedload) supply rate per unit distance in the \(j \)th size range; \(Q_{sa} \) denotes volumetric transport rate of sand; and \(q_{s/j} \) denotes the lateral sand supply rate per unit distance. In addition, \(f_{ij} \) denotes the fraction in the \(j \)th size range of the gravel that is exchanged between the channel bed and bedload as the channel aggrades or degrades. A relation for \(f_{ij} \) is provided below.

The derivation of Eqs. (7), (8) and (9) and an explanation of the terms in the equations are not presented in this paper. Interested readers should be able to derive those equations in reference to similar equations in Parker [1991a,b] and Cui and Parker [1998].

It should be noted that the full set of Eqs. (7), (8) and (9) apply to DREAM-2, in which both gravel and sand transport are modeled. In case of modeling with DREAM-1, it is assumed that gravel transport is insignificant compared to sand transport, and thus, Eqs. (7) and (8) become irrelevant. Furthermore, Eq. (9) is simplified as

\[
(1 - \lambda_p)B \frac{\partial \eta_s}{\partial t} + \frac{\partial Q_{sa}}{\partial x} = q_{s/j}
\]

Considerations are taken in the Exner equation of sediment continuity in the reach upstream of the dam to allow for bank erosion during the period of downcutting. A proper mechanism for bank erosion is especially important in case the reservoir deposit is wide and deep. As shown in Figure 5, the sediment is assumed to have deposited across the valley and the assumed active channel in the model takes a trapezoidal shape with bank slopes at the angle of repose. In aggradational cases, the active channel is assumed to aggrade only on the channel bed and to preserve the two banks. As a result, the trapezoidal channel will increase its bottom width \(B_b \) as channel aggrades (Figure 6a). In degradational cases, the active channel will be allowed to degrade only on the channel bed and to preserve the two banks before the bottom of the trapezoidal channel reaches a predefined minimum width \(B_m \) (Figure 6b). Note that the bottom width of the trapezoidal channel \(B_b \) decreases with the degradation of the active channel. Once the bottom width of the trapezoidal channel \(B_b \) reaches the predefined minimum width \(B_m \), the active channel will erode the channel bed and both banks, preserving the bottom width of the trapezoidal channel at the predefined minimum value (Figure 6c). The above rules are enforced because they offer a very simple treatment for bank erosion in a one-dimensional model in which the detailed evolution of channel cross-sections cannot be modeled.
The value for B_m is chosen by assuming similarities of active channels in the reaches upstream and downstream of the dam. This was done by first calculating the average bankfull depth and bankfull width in the vicinity and downstream of the dam, and assuming that the channel downstream of the dam can be approximated with the same trapezoidal channel as the active channel upstream of the dam. The bottom width of this channel downstream of the dam serves as the minimum value for the bottom width of the trapezoidal channel upstream of the dam, i.e.,

$$B_m = B - \frac{2H_b}{\tan(\theta)}$$ \hspace{1cm} (11)

in which \overline{B} denotes the average bankfull width in the vicinity and downstream of the dam; $\overline{H_b}$ denotes the average bankfull depth in the vicinity and downstream of the dam; and θ denotes the angle of the banks of the trapezoidal channel, which is assumed to be the angle of repose, or approximately 35°.

In aggradational cases or in degradational cases in which the bottom width of the trapezoidal channel B_b is larger than the predefined minimum width B_m, the Exner equation of sediment continuity takes the same form as in the reach downstream of the dam as given in Eqs. (7), (8) and (9) for DREAM-2, or Eq. (10) for DREAM-1, except that bankfull width B is replaced with the bottom width of the trapezoidal channel B_b. In degradational cases where the bottom width of the trapezoidal channel B_b is the same as the minimum width B_m, the Exner equation of sediment continuity takes the same form as in the reach downstream of the dam as given in Eqs. (7), (8) and (9) for DREAM-2, or Eq. (10) for DREAM-1, except that the bankfull width B is replaced with the top width of the trapezoidal channel B_t, where

$$B_t = B_b + \frac{2H_d}{\tan(\theta)} = B_m + \frac{2H_d}{\tan(\theta)}$$ \hspace{1cm} (12)

in which H_d denotes the depth of the trapezoidal channel, i.e., the elevation difference between the surface of the reservoir deposit and the bottom of the trapezoidal channel. Hence, degradation at minimum bed width strips a layer of constant thickness off the channel bed and banks. This allows the active channel to preserve its shape. As pointed out earlier, the geometry of the active channel in the reservoir deposit following dam removal is not known. The above assumption should be taken as a first approximation and can be modified later once field data are available.
In order to calculate sediment transport capacity, sediment is classified as a) gravel (or coarser), which moves as bedload in DREAM-2; b) sand, which moves as undifferentiated bed material load in DREAM-1, and bedload or suspended load in the sand range (62.5 microns to 2 mm) in DREAM-2; and c) silt, which is treated as wash load in both models. The implementation of DREAM-2 requires the calculation of the transport capacity of both gravel and sand. Attempts to develop transport equations for gravel-sand mixtures have been the frontier of sediment transport research for many years with little progress, although some promising equations have emerged in the past several years [e.g., Wilcock 1997, 1998; Wilcock and Crowe, 2003].

The slow progress in the research for a unified equation for the transport of gravel-sand mixtures is partially due to the fact that large amounts of sand are transported as bedload during intermediate flow events when there is little or no gravel transport. During high flow events where there is significant gravel transport, however, sand is often transported predominantly as suspended load. In addition, the fraction of sand in the deposit of a clast-supported gravel-bedded river may also be relatively insensitive to the amount of sand in transport. Field data indicate that sand in the deposit of a clast-supported river usually does not exceed 35% of the total sediment. Such documentation was provided by Sambrook-Smith and Ferguson [1995] for the Allt Dubhaig, Scotland, in which the fraction of sand in the channel deposit increased from about 5% at approximately 2.5 km upstream of a gravel-sand transition to approximately 30% a short distance upstream of the gravel-sand transition, before the river transformed completely into a sand bed river a short distance downstream. A similar observation is also reported in Cui and Parker [1998] with data from a set of large-scale laboratory experiment reported by Toro-Escobar et al. [1996], in which the fraction of sand ranges between approximately 20% and 35%.

In addition, Cui and Parker [1998] also demonstrated that the fraction of sand in gravel deposits is inversely correlated to the standard deviation of the gravel deposits, suggesting that the pores of gravel deposit (excluding sand) may control the fraction of sand in the deposit. Although the bimodality of many natural sediments and the weak correlation between sand transport and the sand fraction in channel deposit make it difficult to develop a unified transport equation for gravel-sand mixtures, these same observations suggest that independent calculations of gravel and sand transport capacities using separate equations may be an adequate crude first approximation. Thus gravel and sand transport capacities are calculated independently in the model.
The above comments notwithstanding, the recent contribution of Wilcock and Crowe [2003] offers a method for the computation of sand-gravel bedload transport in which the presence of the sand in the bed surface layer can act to increase the mobility of the gravel. Such a formulation may be included in future developments.

The sediment transport equation employed for calculation of sand transport capacity in DREAM-1 and DREAM-2 is the bed material equation of Brownlie [1982], which was empirically derived from a very large database of flume experiments and field measurements. The application of Brownlie’s bed material equation [Brownlie 1982] requires the coupling of the sediment transport equation with a friction formulation. Brownlie [1982] classified the flow into lower and upper flow regimes, and friction formulations were given for each regime. The lower regime corresponds to a state with ripple and dune bedforms and upper regime corresponds to the plane bed or antidune state. An upper limit for lower regime and a lower limit for upper regime are provided in Brownlie [1982], and the actual transition between the two regimes is dependent on whether the flow stage is rising or falling. Because the model applies the daily average discharge record as model input, the specifics about whether the flow is rising or falling are not included in the use of the Brownlie’s formulation, and as a result, the average of the upper limit of the lower regime and the lower limit of the upper regime is used to define the transition between the two regimes in the model. In addition, in applying the bed material equation of Brownlie [1982] and its associated friction formulations, the median grain size is replaced with geometric mean grain size because a) geometric mean grain size is usually very close to the median size; b) geometric mean grain size is usually more representative of the characteristics of a grain size distribution; and c) geometric mean grain size is relatively easy to calculate because it eliminates the interpolation process in a median grain size calculation. Versions of the Brownlie equations that are slightly modified in this way have been presented in Cui and Wilcox [in press] and are not described here.

Brownlie’s bed material load equation calculates the transport capacity of bed material, which is usually composed primarily of sand and can be transported either as bedload or suspended load. Finer particles such as silt and clay are considered as wash load, which can be supplied from upstream and tributaries, and is assumed not to be deposited onto the channel bed. The wash load deposited in the reservoir during the period of dam operation is assumed to be entrained into the water column and transported downstream without re-deposition once it is exposed to the
flow. Given the importance of distinguishing the suspended load from the total load in order to assess potential biologically significant sediment concentrations in suspension, the portion of the bed material load that is in suspension is calculated using the following criterion [e.g. van Rijn, 1984]:

\[
\frac{v_s}{\kappa u_*} < 1
\]

(13)

where \(v_s\) is particle settling velocity calculated with the procedure given by Dietrich [1982]; \(\kappa\) is the von Karman constant with a value of 0.4, and \(u_\ast\) denotes shear velocity.

The sediment transport equation employed for calculation of gravel transport capacity in DREAM-2 is the surface-based bedload equation of Parker [1990a,b]. Parker’s bedload equation [Parker 1990a,b] calculates bedload transport rate and grain size distribution based on the local surface grain size distribution and shear stress. Details of the surface-based bedload equation of Parker [1990a,b] are not presented here; interested readers are referred to the original publications [e.g. Parker 1990a,b].

Parker [1990a,b] suggested that a Keulegan type of resistance relation be used in conjunction to his surface-based bedload equation, by assuming the roughness height as twice the surface grain size \(D_{90}\). Cui et al. [1996] slightly modified the resistance relation suggested by Parker [1990a,b] by replacing the roughness height \(k_s\) with

\[
k_s = 2D_{sg} \sigma_{sg}^{1.28}
\]

(14)

in which \(D_{sg}\) and \(\sigma_{sg}\) denote the surface geometric mean and geometric standard deviation, respectively. It should be noted that sand is excluded from the surface grain size distribution in calculating \(D_{sg}\) and \(\sigma_{sg}\) values. The slightly modified resistance relation [Cui et al. 1996] has been employed in the models of Cui and Parker [1997, 1998, submitted], Cui et al. [submitted(b)], and Cui and Wilcox [in press].

It should be noted that there are two sets of resistance relations in DREAM-2; the modified resistance relation of Brownlie [1982] in calculating sand transport capacity and the Keulegan type relation in calculating gravel transport capacity. Realizing that the channel bed is primarily gravel-bedded in a DREAM-2 simulation, the Keulegan type of resistance relation is used for simulation of flow at all times in implementing DREAM-2.
Application of sediment continuity equation in DREAM-2 also needs a relation to link the grain size distributions in bedload and the channel bed (e.g., surface layer and substrate). The relations applied in DREAM-2 are the same as those in Cui and Parker [submitted] and in the Marmot Dam removal model [Cui and Wilcox, in press]:

\[
\begin{align*}
 f_{b,j} &= \begin{cases}
 f_{bj}, & \frac{\partial \eta_s}{\partial t} < 0 \text{ (bed degradation)} \\
 0.3F_j + 0.7p_j, & \frac{\partial \eta_s}{\partial t} > 0 \text{ (bed aggradation)}
 \end{cases} \\
\end{align*}
\]

where \(f_{bj} \) denotes the fraction of the subsurface deposit in the \(j \)th size range. Eq. (15a) represents the assumption of Parker [1990a,b] that flow mines the subsurface material during degradational cases, and Eq. (15b) is a relation of the form that was proposed by Hoey and Ferguson (1994), and the coefficients of which were evaluated by Toro-Escobar et al. (1996) from a set of large-scale laboratory experiment.

DREAM-2 can describe the transport of gravel as throughput load over bedrock. In this case, the gravel transport capacity over bedrock is calculated with the surface-based bedload equation of Parker (1990a,b) and with a surrogate surface grain size distribution borrowed from the nearest neighboring node. Both DREAM-1 and DREAM-2 can describe the transport of sand as suspended throughput load over a gravel bed or bedrock. In order to do this, the Brownlie [1982] relation is used to compute sand transport capacity over the existing bed. If the sand transport capacity is more than the local transport of sand, the sand is moved downstream as throughput load. The sandy throughput load is similar to wash load, with the exception that it may be deposited in the interstices of an aggrading gravel deposit in a DREAM-2 simulation. This loss is described in Eq. (9) by means of the term \(f_{sa} \), which is set equal to 0.35 when gravel is aggrading the bed. That is, it is assumed that 35% of a gravel deposit produced by aggradation consists of sand deposited in the interstices of the gravel. It is possible that the entire sand load is consumed in this way, so that the throughput load drops to zero downstream of a point. In the event that the model predicts such a condition, \(f_{sa} \) is set equal to zero downstream of the point in question.

4. Boundary Conditions

Discharge: The two models apply daily average discharge, which can usually be downloaded from USGS web pages or other data sources when data from a gauging station is available. In order to account for contributions from tributaries, the river can be divided into as many reaches...
as necessary, and individual discharge records can be applied to different reaches. The results of hydrologic modeling may be employed in the event that field measurements of discharge are insufficient.

Sediment Supply: Long-term average sediment supply rates from the upstream end of the study reach and tributaries are required as model input. Sediment supply from bank erosion downstream of the dam is not specifically built into the current model, although it can be treated as the term \(q_{w} \) in Eqs. (7), (8) and (9) by modifying the input module of the model. Significant bank erosion can also be accounted for in the current models by treating the location of bank erosion as a tributary. The sediment supply rate at any given time is distributed using the following assumptions as a first order approximation;

\[
Q_{g0} = \alpha_{0} Q_{w}^{2.5}, \quad Q_{s0} = \alpha_{1} Q_{w}^{1.5}, \quad Q_{\text{wash}0} = \alpha_{2} Q_{w}^{1.1}
\]

(16a,b,c)

in which \(Q_{g0} \), \(Q_{s0} \) and \(Q_{\text{wash}0} \) denote the transport supply rates for gravel, sand, and silt, respectively; and \(Q_{w} \) denotes water discharge that carries the sediment supply, e.g., discharge at the upstream end of the modeled reach, or from tributaries. That is, the gravel, sand, and wash load supplies are assumed to be proportional to discharge to 2.5, 1.5, and 1.1 powers, respectively, reflecting a relatively stronger non-linear relationship between sediment supply and discharge for coarser sediment. The coefficients \(\alpha_{0} \), \(\alpha_{1} \) and \(\alpha_{2} \) are calculated from the measured or inferred long-term average sediment supply and the discharge record as follows:

\[
\alpha_{0} = \frac{\bar{Q}_{g}}{\text{Average}(Q_{w}^{2.5})}, \quad \alpha_{1} = \frac{\bar{Q}_{s}}{\text{Average}(Q_{w}^{1.5})}, \quad \alpha_{2} = \frac{\bar{Q}_{\text{wash}}}{\text{Average}(Q_{w}^{1.1})}
\]

(17a,b)

in which \(\bar{Q}_{g} \), \(\bar{Q}_{s} \) and \(\bar{Q}_{\text{wash}} \) are long-term gravel, sand and wash load supply rates from the upstream end or tributaries.

Downstream End: Downstream end boundary conditions include bed elevation and water depth. In this model, the bed elevation at the downstream end is assumed to be constant throughout the run, i.e. the channel bed does not aggrade or degrade at the downstream end node. Water depth is calculated by assuming a normal flow condition at the downstream end, i.e., by combining Eq. (1b) with the appropriate friction formulations.
5. Staged Removal and Dredging Operation

The models allow the implementation of staged dam removal and partial dredging as options. In a staged removal the dam is removed in sections, starting with the top. In some cases, a notch is placed at the bottom of the removed section to drain water, and possibly sediment, from the reservoir. During staged removal, the models assume that flow control structures will not be installed on the notch, and thus free surface flow will continue throughout the removal process. Staged removal is incorporated into the models by setting the base elevation (η_b) and channel width (B) at the dam site to the crest elevation of the remaining portion of the dam and the width of the notch, respectively, during each removal stage. In case of partial dredging, some of the sediment in the reservoir deposit is mechanically excavated before the dam is removed. Dredging is incorporated into the models by reducing the post-dredging elevation at each node to a specified value prior to dam removal. Dredging is assumed to be implemented to a cross section that is the same or wider than the assumed trapezoidal channel in case of natural erosion. It is assumed that dredging operation will always remove sediment only to the specified depth of dredging, without mixing the remaining sediment below.

6. Initial Condition and Zeroing Process

The initial condition of the model simulation is a specified longitudinal profile of the river, including the base elevation (elevation to the top of the bedrock) and thickness of sand and/or gravel deposit. This initial longitudinal profile is adjusted by the zeroing process described below. The model also requires the sediment composition (i.e., fractions of gravel, sand and silt) in the reservoir deposit and downstream at different locations and depths as input.

A zeroing process should be applied in long-term, large-scale sediment transport simulations. The purpose of the zeroing process is to generate a starting point for the intended simulation and to evaluate certain input parameters. This process recognizes the imperfection of the numerical model as well as the database used to run the model. In the zeroing process, the model is run repeatedly under an appropriately chosen reference condition. If the model is fed with raw data without modification (i.e., a zero process is not applied), it typically will not produce “quasi-equilibrium” results at a pre-dam release reference condition due to the simplifications and imperfections in the model, the simplified data collection, and the dynamic nature of fluvial processes. Here “quasi-equilibrium” is used in a loose sense, and implies that the model predicts
the slow, regular morphodynamic change in a river that can be expected in the absence of the
dam and other major disturbances. A numerical model applied without zeroing to raw data often
indicates zones of large and spurious aggradation and degradation that are neither realistic nor
observed.

In the process of zeroing the model is repeatedly run at the reference state, modifying certain
input parameters as required until the model produces “quasi-equilibrium” results, whereby the
river experiences aggradation and degradation at different reaches over different periods of time
and hydrological events, but overall, long-term aggradation or degradation is limited within the
expected or observed range. The “quasi-equilibrium” longitudinal profile downstream of the
dam established during the zeroing process provides the initial condition for the intended
sediment transport simulation such as one following a dam removal. The aggradational and
degradational patterns of the zeroing process provide a base level condition to which the
intended sediment transport simulation can be compared. Examples of the zeroing processes can
be found in Cui and Wilcox [in press] and in the companion paper, Cui et al. [submitted(c)]. A
zeroing process that requires more than minor adjustments to the longitudinal profile of the
stream should be interpreted as evidence that the model is inapplicable to the case at hand or the
input data are in error.

In the present work the zeroing process is applied to the reach downstream of the dam, and the
reference state is based on the longitudinal profile of the river in that reach just prior to dam
removal. Sediment supply is introduced into this reach as if there is no dam, and the longitudinal
profile and other parameters are modestly adjusted until the reach shows an acceptably low level
of aggradation/degradation throughout. Ideally the reference state should be based on the
longitudinal profile of the river before the dam was installed, but such information is often not
available.

7. Model Validation

Because there are no data available for model validation from actual dam removal projects, we
used the St. Anthony Falls Laboratory (SAFL) sediment pulse experiment Run 4b [Cui et al.
submitted(a), Lisle et al. 2001] for validation of sand transport in DREAM-1 and DREAM-2,
and the documentation of a natural landslide [Hansler 1999, Lisle et al. 2001, Sutherland et al.
2002] for validation of bedload transport in DREAM-2. In addition, we simulated the Lake
Mills drawdown experiment on the Elwha River [Childers et al. 2000] to validate the reservoir erosion module. The validations are discussed below.

SAFL Sediment Pulse Experiments Run 4b

The SAFL sediment pulse experimental runs [Cui et al. submitted(a)] were conducted in a 0.5 m wide and approximately 45 m long flume. Before the experiments, an initial channel slope was established by continuously feeding water and sediment at constant rates of 9 l/s and 45 g/min, respectively. The sediment used to set up the initial slope was a mixture of pea gravel and sand with a median grain size of about 2 mm. The resulting channel bed was slightly armored with an equilibrium slope of about 0.0108. Upon reaching the equilibrium slope, a pulse of sediment was introduced in a section of the flume as shown in Figure 7a. The water discharge and sediment feed rate were then reestablished to their pre-pulse levels. To describe the evolution of the pulse, bed elevations were measured for the duration of the experiment. Of all the SAFL sediment pulse experimental runs, Runs 1, 2, 3, 4a, and 4b, only Runs 4a and 4b introduced a fine sediment pulse which can be viewed as the simulation of sand transport over a gravel-bedded river. Between Runs 4a and 4b, Run 4a was a trial run without intensive measurements. The fine sediment (sand) pulse introduced in Runs 4a and 4b had a geometric mean grain size of approximately 0.55 mm and geometric standard deviation of about 2.31. The experimental results for Run 4b are shown in Figure 7a.

DREAM-1 was developed to simulate dam removal at field scale, and the current model structure do not allow for simulation of flume experiments. For example, the output of the model is given in terms of daily, weekly and monthly results and cannot provide the fine time scales appropriate for a flume experiment. We therefore developed a simplified flume version of DREAM-1 to simulate the SAFL sediment pulse experiment Run 4b. In simplifying DREAM-1, a “fudge factor” was added into the model to allow the user to adjust the predicted sediment transport rates. For example, a “fudge factor” of 1 means that there is no adjustment to the sediment transport rate predicted with Brownlie’s bed material load equation and a factor of 2 means that the sediment transport capacity used in the model is twice that predicted by Brownlie’s equation.

The numerical experiments indicated that the simulation under-predicted the sand transport rate, evidenced by a slower pulse evolution in the numerical simulation. Increasing the calculated sediment transport rate by a “fudge factor” of 2.2, however, reproduced the experimental results
satisfactorily via a visual inspection, as shown in Figure 7b. Comparison of Figures 7a and 7b indicates that the adjusted model provided a very accurate reproduction of the experiment results, including such features as the dispersion and downstream translation of the sediment pulse, the locations of the leading and trailing edges of the sediment pulse, and the time at which the sediment pulse became so diffuse that it was difficult to distinguish from the ambient sediment. Note in Figure 7b that the initial bed profile has been smoothed before applying the model.

Wooster [2002] applied the simplified DREAM-1 to simulate his dam removal experiments and found that a fudge factor of 3.4 produced an excellent match between the simulation and experimental data.

Lake Mills Drawdown Experiment

DREAM-1 was also applied to simulate the Lake Mills drawdown experiment [Childers et al. 2000] in order to validate its reservoir erosion module. Lake Mills, shown in Figure 8, is the reservoir behind the Glines Canyon dam on the Elwha River under study for removal [e.g., Bureau of Reclamation 1996a,b]. The Lake Mills drawdown experiment [Childers et al. 2000] was conducted between April 8 and 26, 1994, when the lake level was gradually lowered from 179.2 m to 173.7 m over a one-week period, with a lowering rate ranging between 0.3 and 0.9 m/day. The lake was then held at 173.7 m for a week and then gradually filled back to the pre-drawdown level of 179.2 m [Childers et al. 2000; and Timothy Randle, personal communication]. The time variation of lake level in Lake Mills during the drawdown experiment is given in Figure 9.

Note that the Lake Mills drawdown experiment differed from our assumed dam removal scenario in that the lake drawdown experiment slowly lowered the lake level as described above and in Childers et al. [2000], while the base level for our assumed dam removal scenario would be lowered instantly. The above difference may result in differences in channel erosion patterns and other channel morphology. Despite the differences, the drawdown experiment offered an opportunity to see how the model results and field measurements compare at a scale much larger than a flume.

The current model (DREAM-1) was modified slightly to allow for the gradual decrease in lake level during the drawdown experiment. The input parameters for the simulation are summarized below.
Discharge: The numerical simulation assumes that only a single channel exists, and thus the total discharge measured at the Elwha River above Lake Mills near Port Angeles, WA (USGS station no. 12044900), located approximately 370 m upstream of the study area shown in Figure 8 is used for the simulation. The daily average discharge record at the station during the drawdown period is shown in Figure 10.

Grain Size Distribution: The experimental drawdown resulted in sediment erosion of only the Lake Mills delta. With this in mind, the average grain size distribution of the delta, as shown in Figure 11, is used to represent the grain size distribution of all the sediment in the simulation. The geometric mean grain size and geometric standard deviation of the delta sediment are approximately 1.44 mm and 3.07, respectively.

Sediment Supply: The drawdown experiment was performed during a relatively low flow period, and thus it is likely that upstream sediment supply was minimal. In addition, the amount of reservoir erosion was very large, making any additional upstream sediment supply insignificant during the 3-week period. With that in mind, the upstream sediment supply is set to zero in the modeling exercise.

Active Channel Geometry: In DREAM-1, the active channel in the reach upstream of the dam is assumed to be trapezoidal. There are four parameters that define the initial active channel before dam removal: bed elevation, channel width at the bottom of the trapezoidal channel, bankfull depth, and bank slope. In addition, the width of sediment deposit in the reservoir limits how wide the active channel will develop once the active channel incises into the deposit. The widths of the sediment deposit in the reservoir were read from the aerial photograph in Figure 8. The accuracy of the width of the reservoir deposit is not relevant to this modeling exercise because the river did not erode all the way to the valley walls. The bank slope of the active channel following the reservoir drawdown uses the default value in DREAM-1, i.e., the bank is assumed to be at the angle of repose, or 35°. Based on the field data of Childers et al. [2000], the initial channel in the reservoir reach is assumed to be 1 m deep and 97 m wide at the bottom, or 100 m wide at bankfull flow.

The observed channel evolution at cross section 8 in the deposit of Lake Mills is shown in Figure 12. Note that two channels have formed, rather than the one channel assumed in the model. This issue is discussed below. Due to the difficulties in interpreting average bed elevations and channel widths from the field data as evidenced in Figure 12, and because the most important
function of the reservoir erosion module is to predict the amount of sediment erosion, only the simulated and observed amount of erosion are compared, as shown in Figure 13.

Figure 13 shows that the simulation predicted the time variation of total sediment erosion relatively accurately. Further examination of the field data, however, indicates that reservoir erosion was primarily restricted to the reach between cross sections 7 and 11 of Figure 8, with very limited erosion upstream of cross section 11. Compared to the field data, the simulation underpredicted the amount of erosion between cross sections 7 and 11 by approximately a factor of 2. The underprediction of sediment erosion between cross sections 7 and 11 is very likely caused by the extensive lateral erosion developed in the field. As a result, the combined channel width in the field is much larger than that predicted in the simulation. For example, the bankfull channel width at the end of the drawdown experiment increased to only about 107 m from the original 100 m in the simulation for cross section 8, as shown in Figure 14. Field data, however, indicate that channel width of cross section 8 increased to about 210 m at the end of the drawdown experiment, as shown in Figure 12. It is very likely that the large amount of lateral erosion in the drawdown experiment prevented erosion upstream of cross section 11.

As discussed earlier, our assumed dam removal scenarios differ from Lake Mills drawdown experiment in that Lake Mills level was lowered gradually with a maximum lowering rate of 0.9 m/day, while our assumed dam removal scenario lowers the base level instantly, which is very likely to lead to development of a narrower channel without extensive lateral erosion as shown in Figure 14. Having said that, however, much more research and field observations are needed in order to better understand the reservoir erosion process, which can in turn be used to improve the reservoir erosion module of the current models.

Navarro River 1995 Landslide

The natural landslide used for DREAM-2 validation was that of the Navarro River, California, which occurred in March 1995 and was documented by Hansler [1999], Lisle et al. [2001], and Sutherland et al. [2002]. The landslide delivered approximately 60,000 to 80,000 m3 sediment to the channel from the adjacent hillslope. The evolution process of the landslide was documented in summer of 1995 and two subsequent summers [Hansler 1999, Lisle et al. 2001, Sutherland et al. 2002]. Simulation of the landslide with an early version of the Cui and Parker [submitted] model by Hansler [1999] (also reported in Lisle et al. [2001]) produced good agreement. Here the input data are fed into the DREAM-2 without any adjustment to the model. The comparison
of measured and simulated net changes in bed elevation is shown in Figure 15, indicating good agreement. In particular, the simulation reproduced 1) the slight aggradation upstream of the landslide between 1996 and 1997; 2) the degradation of the landslide over the duration of observation; and 3) the almost indistinguishable change in bed elevation farther downstream.

Two features not reproduced by the model are: 1) the aggradation of fine sediment immediately upstream of the landslide between 1995 and 1996 and its subsequent erosion between 1996 and 1997; and 2) a hard point at roughly 3.8 km that was not eroded in the field. The model did not reproduce the two features because 1) deposition of fine sediment at upstream of the landslide is not modeled; and 2) the model was one-dimensional and may not be able to reproduce some of the local features observed in the field. Even with the two features not predicted by the model, the overall agreement between model prediction and field data is good, as evidenced in the comparison of bed aggradation in Figure 15(c).

8. Conclusions

This paper presents a summary of the Dam Removal Express Assessment Models: DREAM-1 for simulation of sediment transport following dam removal behind which the reservoir deposit is composed primarily of non-cohesive sand and silt, and DREAM-2 for simulation of sediment transport following dam removal behind which the upper layer of reservoir deposit is composed primarily of gravel. The models apply the simplified procedure of Cui and Parker [submitted] that combines the backwater equation and quasi-normal flow assumptions for flow simulation.

In applying the simplified procedure for flow calculation, the channel geometry of the entire calculation domain is assumed to be rectangular with bankfull channel width. For sediment continuity calculations the channel downstream of the dam is assumed to have the same rectangular cross-sectional shape as in the flow calculation, and the channel upstream of the dam is assumed to be trapezoidal, allowing for bank erosion during the period of downcutting. In DREAM-2, gravel and sand transport are integrated into a single model, although the transport capacities of gravel and sand are calculated with their respective equations. The integrated gravel and sand model allows sand generated from abrasion and lost to interstices of gravel deposit to be accounted for.

Comparison of a simplified version of the DREAM-1 model with SAFL sediment pulse experiment Run 4b [Cui et al. submitted(a), Lisle et al. 2001] indicates that Brownlie’s bed material equation [Brownlie 1982] underpredicted sediment transport capacity. Increasing the
sediment transport capacity predicted by Brownlie’s bed material equation [Brownlie 1982] by a factor of 2.2, however, produces good results. The reservoir erosion module of DREAM-1 is also applied to simulate the Lake Mills drawdown experiment [Childers et al. 2000]. Comparison of the simulation with experimental data indicates that the model closely reproduced the total amount of erosion in the reservoir. The simulated pattern of reservoir erosion, however, differs from that in the field. The difference in erosion patterns between the simulation and the field experiment is, however, very likely caused by the extensive lateral erosion in the field induced by the slowly lowered lake level. DREAM-2 is validated with data for a natural landslide on the Navarro River, California, documented by Hansler [1999], Lisle et al. [2001] and Sutherland et al. [2002], with good agreement between simulation and field data.

The companion paper, Cui et al. [submitted(c)] provides a series of sample runs as sensitivity tests pertaining to some of the important end-user and built-in parameters. **Acknowledgments**

Model development was partially supported by National Oceanic and Atmospheric Administration (NOAA). Funding to Stillwater Sciences, the University of Minnesota and University of California, Berkeley that directly or indirectly benefited the development of the current models was provided by the following sources: Portland General Electric (PGE), PacifiCorp, National Science Foundation (NSF), Environmental Protection Agency (EPA), National Aviation and Space Administration (NASA), Ok Tedi Mining Limited (OTML) and the St. Johns River Water Management District, Florida. We thank Drs. Marcelo Garcia (U Illinois), Thomas Lisle (USFS), James Pizzuto (U Delaware) and Stephen Wiele (USGS), whose reviews to the Marmot Dam removal modeling sparked many improvements in the development of the current models. Many Stillwater employees contributed to the development of the models: Andrew Wilcox (currently Colorado State University), Frank Ligon, Jennifer Vick (currently US Park Service), John O’Brien (currently US Forest Service) and Bruce Orr. Peter Downs reviewed an earlier draft and provided many useful suggestions. This paper is a contribution of the National Center for Earth-surface Dynamics (NCED) based at St. Anthony Falls Laboratory, University of Minnesota, in which the University of California, Berkeley participates, and of which Stillwater Sciences, Berkeley, California is a partner.
List of Symbols

\(B \) \hspace{1cm} \text{Bankfull channel width;}

\(\bar{B} \) \hspace{1cm} \text{Average bankfull width for the reach close to and downstream of the dam;}

\(B_b \) \hspace{1cm} \text{Bottom width of the trapezoidal channel;}

\(B_m \) \hspace{1cm} \text{Minimum bottom width of the trapezoidal channel;}

\(B_t \) \hspace{1cm} \text{Top width of the trapezoidal channel;}

\(D \) \hspace{1cm} \text{Particle grain size;}

\(\overline{D_j} \) \hspace{1cm} \text{Geometric mean grain size of the jth size group;}

\(D_{sg} \) \hspace{1cm} \text{Geometric mean grain size of surface gravel;}

\(f_{bj} \) \hspace{1cm} \text{Volumetric fraction of the jth size group in subsurface gravel;}

\(f_g \) \hspace{1cm} \text{Fraction of gravel in sediment deposit;}

\(f_{ij} \) \hspace{1cm} \text{Volumetric fraction of the jth size group in the gravel that is exchanged between bedload and channel in a gravel-bedded river;}

\(f_{sa} \) \hspace{1cm} \text{Fraction of sand in sediment deposit;}

\(F \) \hspace{1cm} \text{Froude number;}

\(F_j \) \hspace{1cm} \text{Volumetric fraction of the jth size group in surface gravel of a gravel-bedded river;}

\(F_j' \) \hspace{1cm} \text{Fraction of the area for the jth gravel size group exposed to the flow in surface layer;}

\(g \) \hspace{1cm} \text{Acceleration of gravity;}

\(h \) \hspace{1cm} \text{Water depth;}

\(H_d \) \hspace{1cm} \text{Depth of the trapezoidal channel;}

\(\overline{H_d} \) \hspace{1cm} \text{Average bankfull depth for the reach close to and downstream of the dam;}

\(k_s \) \hspace{1cm} \text{Roughness height;}

\(L_a \) \hspace{1cm} \text{Active layer (surface layer) thickness;}

\(p_j \) \hspace{1cm} \text{Volumetric fraction of the jth gravel size group in bedload of a gravel-bedded river;}

\(q_{g/} \) \hspace{1cm} \text{Lateral gravel and sand supply to the channel, in volume per unit channel length per unit time;}
Q_g Volumetric transport rate of gravel;

\overline{Q}_g Long-term average volumetric rate of gravel supply;

Q_{g0} Volumetric rate of gravel supply;

Q_s Volumetric transport rate of sand;

\overline{Q}_s Long-term average volumetric rate of sand supply;

Q_{s0} Volumetric rate of sand supply;

Q_w Water discharge;

\overline{Q}_{wash} Long-term average volumetric rate of wash load supply;

Q_{wash0} Volumetric rate of wash load supply;

S_0 Channel bed slope;

S_f Friction slope;

t Time;

u^* Shear velocity;

v_s Sediment particle settling velocity;

x Downstream distance;

$\alpha_0, \alpha_1, \alpha_2$ Coefficients for proportioning sediment supply;

β Volumetric abrasion coefficient;

ϕ Grain size ϕ-scale;

η_b Non-erodible base (bedrock) elevation;

η_g Thickness of gravel deposit;

η_s Thickness of sand deposit;

κ von Karman costant;

λ_p Porosity of the sediment deposit;

θ Bank angle of the trapezoidal channel, which is assumed to be the angle of repose;

σ_{sg} Geometric standard deviation of surface gravel;

ψ Grain size ψ-scale, which is the negative of ϕ-scale.
References

ASCE, 1997, Guidelines for retirement of dams and hydroelectric facilities, ASCE, 345 East 47
Street, New York, NY 10017-2398, 222p.

Bhallamudi, S.M. and Chaudhry, M.H., 1991, Numerical modeling of aggradation and
degradation in alluvial channels. *Journal of Hydraulic Engineering*, ASCE, 117(9), 1145-
1164.

Brownlie, W.R., 1982, Prediction of flow depth and sediment discharge in open channels, Ph.D.
Thesis, California Institute of Technology, Pasadena, California.

Bureau of Reclamation, 1996a, Removal of Elwha and Glines Canyon Dams, Elwha River
Ecosystem and Fisheries Restoration Project, Washington, Elwha Technical Series PN-95-7,
May.

Bureau of Reclamation, 1996b, Sediment analysis and modeling of the river erosion alternative,
Elwha River Ecosystem and Fisheries Restoration Project, Washington, Elwha Technical
Series PN-95-9, October.

Childers, D, Kresch, D.L, Gustafson, S.A., Randle, T.J., Melena, J.T., and Cluer, B., 2000,
Hydrologic data collected during the 1994 Lake Mills Drawdown experiment, Elwha River,
Tacoma, Washington.

Cui, Y., Parker, G. and Paola, C., 1996, Numerical simulation of aggradation and downstream

Cui, Y. and Parker, G., 1997, A quasi-normal simulation of aggradation and downstream fining

Cui, Y. and Parker, G., submitted, A numerical model for the evolution of sediment pulses in
mountain rivers. *Journal of Hydraulic Engineering*.

Cui, Y., Parker, G., Lisle, T.E., Gott, J., Hansler, M.E., Pizzuto, J.E., Allmendinger, N.E., and
Resources Research*.

Hansler, M.E., 1999, Sediment wave evolution and analysis of a one-dimensional sediment routing model, Navarro River, Northwestern California, A thesis presented to The Faculty of Humboldt State University in partial fulfillment of the requirements for the degree of Master of Sciences, December, 128p.

List of Figures

Figure 1. Sketch of the typical geomorphic characteristics of a dam removal project.

Figure 2. Sketch defining some of the terms used in the models.

Figure 3. Sketch of simulated water surface profile, demonstrating the validity of the simplified treatment.

Figure 4. Simulation of SAFL downstream fining Run 2, demonstrating that the simplified treatment of flow simulation is adequate for sediment transport simulation. a) water surface and bed elevations; b) characteristic grain size using the ψ-scale defined in Eq. (4).

Figure 5. Sketch of a typical reservoir deposit and the simplification of the active channel following dam removal. (a) Typical reservoir deposit, showing poorly-defined channels with a dominant channel; and (b) The simplification in the model, representing a single active channel.

Figure 6. Sketch demonstrating the treatment of aggradation and degradation in the reservoir deposit.

Figure 7. SAFL sediment pulse experiment Run 4b. a). Experimental data (Cui et al. 2002a, Lisle et al. 2001), and b). Simulation with the simplified DREAM-1 and a fudge factor of 2.2.

Figure 8. Lake Mills, Elwha river showing the monitoring cross sections. Modified from Childers et al. 2000.

Figure 9. Lake Mills water surface elevation during the drawdown experiment; data based on Childers et al. (2000) and Timothy Randle, personal communication.

Figure 10. Daily average discharge at Elwha River above Lake Mills near Port Angeles, WA (USGS station no. 12044900) during the lake drawdown experiment.

Figure 11. Average grain size distribution of the Lake Mills delta deposit (data source: Childers et al. 2000).

Figure 12. The evolution of cross section 8 surveyed during the Lake Mills drawdown experiment.

Figure 13. Measured and simulated reservoir erosion during the Lake Mills drawdown experiment.
Figure 14. The evolution of cross section 8 simulated with the reservoir erosion module of DREAM-1.

Figure 15. Landslide in the Navarro River, California. (a) field data documented by Hansler [1999], Lisle et al. [2001] and Sutherland et al. [2002]; (b) simulated longitudinal profile with DREAM-2; and (c) Comparison of net change in bed elevation, i.e., deviation of bed elevation from the initial (immediately post-slide) values, between field measurements and DREAM-2 simulation.
a. Before cofferdam breaching

b. After cofferdam breaching
Figure 2

- water surface
- sand deposit
- channel bed
- gravel deposit (above the base)
- material that cannot or will not be eroded by the flow

η_b, η_s, η_g, h
Channel bed

More precise simulation, providing the exact location of a hydraulic jump

Simplified treatment, ignoring the exact location of hydraulic jump

Grid location of one-dimensional sediment transport simulation
Figure 4(b)

- Simplified treatment
- Cui et al. (1996)
- Cui and Parker (1997)

△ Measurement, 0 - 3 hr
◇ Measurement, 14 - 22 hr
□ Measurement, 22 - 32.4 hr

Grain size ψ-scale

Run 2

Distance (m)
Grain size ψ-scale

0 5 10 15 20 25 30 35 40 45 50
a. Typical reservoir deposit

b. Simplification in the model
a. Aggradational case

b. Degradational case, bottom width larger than minimum

\[B_b > B_m \]

b. Degradational case, bottom width equal to minimum

\[B_b = B_m \]
Figure 7

a). Experiment

Initial pulse
1'30"
2'30"
5'00"
9'30"
15'00"
19'00"
21'00"
23'00"
28'00"
33'00"
37'00"
1 hr
2 hr

b). Simulation

Initial pulse
1'30"
2'30"
5'00"
9'30"
15'00"
19'00"
21'00"
23'00"
28'00"
33'00"
37'00"
1 hr
2 hr
Figure 9

Water Surface Elevation in Lake Mills (m)

End of cross sectional survey

Time

Figure 10: Daily Average Discharge (m^3/s) over a period from 4/8 to 4/26.
Simulated total sediment erosion

- - - Simulated sediment erosion between cross sections 7 and 11

Field measurement of total sediment erosion, most of which is from the reach between cross sections 7 and 11

Figure 13
a). Field measurement

b). DREAM-2 simulation

Figure 15(a,b)
Figure 15(c)

Comparison of net change in bed elevation

- 1995 to 1996, simulation
- 1995 to 1996, measurement
- 1995 to 1997, simulation
- 1995 to 1997, measurement