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RE-ANALYSIS AND CORRECTION OF BEDLOAD RELATION OF 

MEYER-PETER AND MÜLLER USING THEIR OWN DATABASE 

 

By Miguel Wong1 and Gary Parker2 

 

ABSTRACT: The pioneering predictor of fluvial bedload transport rate proposed by Meyer-Peter and Müller in 

1948 is still extensively used in basic research and engineering applications. A review of the basis for its formulation 

reveals, however, that an unnecessary bed roughness correction was applied to cases of plane-bed morphodynamic 

equilibrium. Its inclusion followed a flow resistance parameterization in terms of the Nikuradse roughness height, 

which has been shown (well after the publication of their work) to be inappropriate for the characterization of 

mobile bed rough conditions in rivers. Removing the unnecessary correction and incorporating an improved 

correction of the boundary shear stress due to sidewall effects allow elucidation of the most parsimonious form of 

the bedload relation of Meyer-Peter and Müller that is dictated by their own data set. The new predictor is presented 

in terms of two alternative power law forms. These amended forms show that, in the case of lower-regime plane bed 

equilibrium transport of uniform bed sediment, the new estimates of volume bedload transport rates are less than or 

equal to half the values that would be obtained with the original relation of Meyer-Peter and Müller in the absence 

of the unnecessary bed roughness correction. The meticulous database and clear analysis of the original work of 

Meyer-Peter and Müller greatly aided the present authors in their re-analysis, which liberally uses the hindsight 

offered by 57 years of subsequent research. 
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Introduction 

A focus of current research on sediment transport in rivers, particularly in the case of gravel-bed streams, is on 

developing more accurate predictors of the bedload transport rate. Estimating this rate usually involves relating it to 

mean characteristics of the driving force of the flow and the corresponding reach-averaged resistance properties of 

the bed. More than a century has passed since the introduction of the first mechanistic relation of this type by Du 

Boys in 1879 (Ettema and Mutel 2004), but still no formulation can be claimed to be of universal applicability. 

There is a lively debate, for instance, concerning the effects of turbulence and bed heterogeneities at micro and 

macro scales on bedload transport rates, but no agreement has been reached (see e.g., Ashworth et al. 1996; Cao and 

Carling 2002; Wilcock 2004). 

One of the formulae most widely used in laboratory and field investigations as well as in numerical simulations 

of bedload transport is the empirical relation proposed by Meyer-Peter and Müller (1948; abbreviated to “MPM” 

below). This relation was derived from experiments carried out during a period of sixteen years in the flume 

facilities of the Laboratory for Hydraulic Research and Soil Mechanics of the Swiss Federal Institute of Technology 

(ETH) at Zürich, Switzerland. It allows estimation of the bedload transport rate in an open-channel, as a function of 

the excess bed shear stress applied by the flowing water. MPM worked out their relation from a comprehensive 

experimental data set for equilibrium bedload transport under steady, uniform flow that included 135 runs from ETH 

and 116 more runs from the set due to Gilbert (1914; abbreviated as “GIL” below). The data pertain to both 

sediment of uniform size and size mixtures, various values of sediment specific gravity, and cases both with and 

without the presence of bedforms. The original data of MPM were included in an internal report of ETH, but were 

not published until Smart and Jäggi’s paper (1983) on bedload transport on steep slopes. Review of the experimental 

techniques and data analysis carried out by MPM reveals a meticulous attention to detail. 

The bedload transport relation of MPM has been used extensively for almost six decades. With only very few 

exceptions, this usage has not been accompanied by detailed re-analysis of the formula itself, the data on which it is 

based, and its range of validity. Re-analysis to date has concentrated on extension of the formula to: (i) channels that 

are steeper than those of the experiments by MPM (Smart and Jäggi 1983; Smart 1984), and (ii) poorly-sorted 

sediment mixtures (Hunziker 1995; Hunziker and Jäggi 2002). The simplest and most common case to which the 

relation of MPM is typically applied, i.e. the transport of uniform sediment over a flat bed with a slope not 

exceeding 0.02, however, does not appear to have been revisited in the sole context of the original data used by 
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MPM. Hence the question arises: Does the relation of MPM in fact fit the data used in its derivation? Answering this 

is of significance not only because the MPM bedload transport predictor is commonly used for comparative 

purposes in basic research (see e.g., Abdel-Fattah et al. 2004; Barry et al. 2004; Bettess and Frangipane 2003; Bolla 

Pittaluga et al. 2003; Bravo-Espinosa et al. 2003; Defina 2003; Gaudio and Marion 2003; Knappen and Hulscher 

2003; Martin 2003; Mikoš et al. 2003; Nielsen and Callaghan 2003; Ota and Nalluri 2003; Singh et al. 2004; Yang 

2005), but also because it is frequently used in engineering applications (it is one of the relationships available in 

HEC-6, a computer software used for sediment transport calculations that is very popular in the USA). 

This paper is devoted to a thorough review of the basis for the formulation of the MPM relation, with special 

attention to the procedures by which bedform and sidewall corrections were applied by MPM. Hindsight offered by 

the results of more current research on sediment transport and flow resistance in rivers reveals that a) the form drag 

correction used by MPM in analyzing their data for plane-bed conditions is unnecessary, and b) if this unnecessary 

correction is omitted, then the MPM bedload transport relation needs to be modified in order to accurately reproduce 

the experimental observations used to derive it. The analysis presented here culminates in an amended form of the 

MPM relation for the case of lower-regime plane-bed equilibrium transport conditions. It is worth clarifying here 

that the goal of this paper is not to propose a new or improved universal predictor of the bedload transport rate, but 

to correct the data analysis and results of MPM for the case of plane-bed bedload transport in light of research 

results that have become available since the publication of their work. 

It is equally important to point out that the present work is not the first one to conclude that the relation of MPM 

overpredicts bedload transport under plane-bed conditions in the absence of a form drag correction. Credit must go 

to Hunziker, Jäggi, and Smart for first recognizing this (Hunziker 1995; Hunziker and Jäggi 2002; Smart and Jäggi 

1983; Smart 1984). The database used in their analysis is, however, larger than that used by MPM alone. As a result, 

it is not readily apparent that the relation of MPM significantly overpredicts (in the absence of a form drag 

correction) when applied solely to the data (for plane-bed transport) originally used in its derivation. Nor is it 

apparent that the form drag correction is not necessary for the plane-bed data of MPM. In this paper: (a) the 

overprediction in the absence of a form drag correction is demonstrated in the narrow context of the plane-bed data 

used by MPM, (b) the fact that a form drag correction is unnecessary for the plane-bed data used by MPM is made 

evident, and (c) simpler modified forms of MPM which are faithful to the original data set are presented. 
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Fourteen references which use the original form of the MPM bedload transport equation without the form drag 

correction of MPM are presented in the third paragraph of this Introduction. All of these references were published 

subsequently to the works of Hunziker, Jäggi and Smart aforementioned. It is the hope of the authors that the present 

work, combined with the contributions cited above, will finally lead to the recognition that a) the MPM bedload 

equation without the MPM form drag correction overpredicts plane-bed bedload transport by a factor of about 2,  

b) the form drag correction of MPM is unnecessary for plane-bed conditions, and c) a modified form of the MPM 

bedload relation (with no form drag correction) that predicts significantly lower transport rates than the original 

MPM bedload relation (when used with no form drag correction) should be used in the future for plane-bed 

conditions. 

 

Empirical bedload transport relation 

Three data sets were used by MPM for the derivation of their bedload transport relation; they are named here  

ETH-up, GIL-up, and ETH-nup. ETH-up (“up” is an abbreviation for “uniform sediment, plane bed”) consists of the 

results for 52 runs, all pertaining to plane-bed transport of material of uniform size (32 runs with Dm = 28.65 mm, 

and 20 runs with Dm = 5.21 mm, where Dm = arithmetic mean diameter of the sediment) and with a constant value of 

submerged specific gravity of the sediment, R, of 1.68 (R = ρs/ρ – 1, where ρs = density of the sediment, and  

ρ = density of water). GIL-up similarly includes the results of 116 runs, all corresponding to plane-bed transport of 

material of uniform size (27 runs with Dm = 7.01 mm, 69 runs with Dm = 4.94 mm, and 20 runs with Dm = 3.17 mm), 

with a constant value of R of 1.65. ETH-nup (“nup” is an abbreviation for “not necessarily both uniform material 

and plane bed”) comprises the results of 83 runs, in many of which bedforms were present (channel aspect ratio, B/H, 

varied between 1.7 and 72.2, where B = channel width, and H = water depth), the sediment consisted of size 

mixtures (Dm ranged between 0.38 and 5.21 mm, and D90/Dm varied between 1.00 and 2.52, where D90 = particle 

size for which 90% of the sediment is finer by weight), and the value of R differed from 1.68 (R ranged between 

0.25 and 3.22). The descriptor “not necessarily” is motivated by the observation that although Meyer-Peter and 

Müller (1948) indicated that bedforms were present in many of the runs in this set ETH-nup, they do not specify 

which of the runs had bedforms and which did not. Since the focus of the present work is on the transport of uniform 

material over a plane bed, most of the data analysis herein is performed using the sets ETH-up and GIL-up. 
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The relation proposed by MPM estimates the rate of bedload transport in a river as a function of the shear force 

exerted by the flowing water over the sediment bed. This relation evolved over time. A first form of the relation was 

presented by Meyer-Peter et al. (1934); it was based solely on the sets ETH-up and GIL-up, for which bedforms 

were not observed and the sediment could be approximated as uniform in size. An empirical analysis of these data 

resulted in the following equation: 
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where q'w = volume discharge of water per unit channel width after including a correction for sidewall effects 

(details about which follow in the next section), S = slope of the energy grade line, and qb = volume bedload 

transport rate per unit channel width. Equation (1) is not dimensionally homogenous, and requires the use of SI units. 

The data from ETH-up and GIL-up are presented in Figure 1. The line of best fit shown in this figure was 

determined from a standard regression analysis; it is marginally different from equation (1), which Meyer-Peter et 

al. (1934) determined by eye. The slope of the line of best fit is thus 0.37 instead of the value of 0.40 proposed by 

MPM. 

This first relation (1) was later modified (Meyer-Peter and Müller 1948) to include different values of specific 

gravity, as well as to extend the applicability to sediment mixtures. The modified expression is dimensionally 

homogeneous, and reduces to a functional relation between the bedload transport rate and the shear force exerted by 

the water in terms of two well-known dimensionless numbers on sediment transport in rivers: the Einstein and the 

Shields numbers. It is presented here as equation (2), in the dimensionless form first suggested by Chien (1954) that 

is completely equivalent to the original dimensioned equation (26) of Meyer-Peter and Müller (1948): 
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In the above relations q* = dimensionless volume bedload transport rate per unit channel width (Einstein number),  

g = acceleration due to gravity, qw = volume discharge of water per unit channel width (without any sidewall 
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correction; recall that q'w = volume discharge of water per unit channel width after correcting for sidewall effects), 

Kb = Manning-Strickler coefficient of roughness for the bed region, Kr = Manning-Strickler coefficient of bed 

roughness associated with skin friction only (i.e. after form drag due to bedforms has been excluded),  

τ* = dimensionless boundary shear stress (Shields number), and τ0 = boundary shear stress applied by the water over 

the sediment bed under normal flow conditions for a wide open-channel (without any sidewall correction). Separate 

experiments by MPM showed that the critical Shields number for the onset of sediment motion was about 0.030 

(Meyer-Peter and Müller 1948), but an “effective” critical value of 0.047 was adopted instead in the formulation of 

equation (2) because it allowed a better fit of the data. The ratio of q'w to qw (where q'w ≤ qw) represents the sidewall 

correction of MPM, while the ratio of Kb to Kr (where Kb ≤ Kr) to the power of 3/2 represents the bedform correction 

of MPM. Details about the sidewall and bedform corrections of MPM follow in the next sections. These two 

correction factors are rarely included in recent publications referring the MPM bedload transport relation, for 

reasons that are not necessarily clear. 

All the results from the runs at ETH, i.e. ETH-up and ETH-nup, are presented in Figure 2 in a plot of Einstein 

number, q* versus Shields number, τ*. In this figure the data have been reduced using the aforementioned bedform 

and sidewall corrections. One issue to highlight here is that MPM applied a bedform correction even in cases for 

which bedforms were absent. The justification for doing that appears questionable (for more details, see discussion 

on page 57 and Fig. 12 of Meyer-Peter and Müller, 1948). MPM indicated that for a bedload transport rate 

substantially greater than the threshold value for particle incipient motion, part of the shear stress applied by the 

flowing water over the bed is absorbed by the particles in bedload transport. As a result, the effective force causing 

the movement of sediment is reduced, and a “bedform correction” needs to be included even if no bedforms are 

observed. However, the meaning of this ratio Kb/Kr is interpreted in a different way in some classical books on 

sediment transport (Bogárdi 1974; Chang 1992; Garde and Ranga Raju 1985; Graf 1971; Raudkivi 1976; Simons 

and Şentürk 1977; Yang 1971). Four of these authors explicitly propose using a ratio Kb/Kr = 0.5 when strong 

bedforms are present, and a ratio Kb/Kr = 1.0 when bedforms are absent. Their interpretation of Kb/Kr is therefore 

strictly related to the effects of bedforms and not at all on the effects of particles moving in bedload transport on the 

effective shear stress. It will be demonstrated in this paper that such a bedform correction, or in a more general 

context a correction accounting for bed resistance in addition to that due to skin friction, is actually not required for 

the data pertaining to lower-regime plane-bed equilibrium transport of uniform sediment used by MPM. 
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Flow resistance – Sidewall correction 

To determine the actual shear force exerted by the flowing water on the sediment bed, a separation of the effects due 

to the difference in roughness of the channel bed and sidewalls is needed. The sidewall correction of MPM cited 

above is based on the assumptions of uniform flow velocity throughout the cross section of the flow, equal energy 

slope on the bed and wall regions of the flow, and partitioning of the overall Manning-Strickler coefficient of 

roughness for a composite cross section, K, into a bed and a wall component, Kb and Kw, respectively. In other 

words, partitioning is carried out in terms of hydraulic radii. It is worth mentioning at this stage that the different 

Manning-Strickler coefficients of roughness used here, all denoted by the capital letter K, are equal to the inverse of 

the corresponding Manning’s n in SI units, and are thus not at all the same parameters as the (Nikuradse or 

Kamphuis) bed roughness height, for which the notation ks is used here. In addition, it should be recalled from the 

empirical relation proposed by Manning-Strickler for normal flow (Manning 1891; Strickler 1923), that a larger 

value of K should be interpreted as a smaller boundary resistance to the flow; hence, for a channel configuration like 

the one used by MPM in their flume experiments, Kb < K for the gravel bed (rough boundary) while Kw > K for the 

glass walls (smooth boundaries). 

From the water continuity equation and the Manning-Strickler relation (used to estimate K from the measured 

values of qw, B, H, and S), applied in the case of a rectangular cross-section with wetted perimeters B and 2H for the 

bed and wall regions, respectively, the coefficient of roughness for the bed region, Kb, may be computed as: 
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Accordingly, the value of the sidewall-corrected water discharge per unit channel width, q'w, can be obtained from: 
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The computed value of q'w and the measured value of qw are then used in equation (2) to account for sidewall effects, 

such that the input value for the boundary shear stress represents the one effectively acting on the bed region alone. 

A major concern with this sidewall-correction methodology however, is that the coefficient of roughness for the wall 

region, Kw, is set in advance of the actual experiments on bedload transport. Its value is thus independent of qw and 

B/H (see Figure 3), a result that does not seem to have a solid physical background. In this regard Hey (1979) and 

Yen (2002), among other researchers, state that the Darcy-Weisbach equation (Rouse 1946) for flow resistance has a 
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stronger theoretical foundation, and its original formulation for pipe flow can be applied to open-channel flow in the 

following form: 

2

8
u

S r g f =  (7) 

where f = overall Darcy-Weisbach roughness coefficient for a composite cross section, r = hydraulic radius, and  

u = mean flow velocity. In such a formulation the value of f depends on the Reynolds number, Re, which in the case 

of open-channel flow is computed by using a characteristic length of 4r (Re = 4ur/ν, where ν = kinematic viscosity 

of water). 

The sidewall correction proposed by Vanoni and Brooks (Vanoni 1975) makes use of the Darcy-Weisbach 

formulation to estimate flow resistance, and is thus adopted here. The procedure again consists of partitioning the 

cross-section of the flow into two non-interacting parts, i.e. the bed and wall regions. As before, equal mean flow 

velocity and energy gradient in the bed and wall regions are assumed, so partitioning is in terms of hydraulic radii. 

All this translates into the relation given in equation (8) for iteratively calculating the roughness coefficient for the 

wall region, fw, in the case of a smooth hydraulic boundary (Chien and Wan 1999): 
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From the water continuity equation and the Darcy-Weisbach relation applied to the case of a rectangular cross-

section with wetted perimeters B and 2H for the bed and wall regions, respectively, the roughness coefficient for the 

bed region, fb, may be computed as: 
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By combining (7) and (9), one can estimate the value of the hydraulic radius on the bed region, rb, and thus compute 

the corresponding shear velocity, u*
b 
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as well as the sidewall-corrected shear stress, τb: 
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The bed shear stress computed following this procedure replaces the value of (q'w/qw)τ0 that represented the original 

sidewall correction of MPM in equation (2). This results in the following improvements: not only is the expected 

dependence of flow resistance on qw and B/H taken into account (see Figure 4), but also the dependence on the 

Reynolds number, Re. 

 

Flow resistance – Bedform correction 

The other correction factor included in equation (2) allows removal of the form drag component of the channel bed 

resistance, i.e. the component due to bedforms, so quantifying that component of the shear force of the water that 

actually causes bedload transport. In a more general framework, this bedform correction can be interpreted as that 

accounting for all other factors besides skin friction acting on immobile grains (e.g., grain shape, bed structure, 

moving bedload particles, bedforms, channel-scale morphology, surface waves, etc.) that contribute to flow 

resistance. 

As opposed to the procedure for extracting sidewall effects, the bedform correction proposed by MPM consists 

of a partitioning of the slope of the energy grade line, S, into one related to form resistance and another associated 

with skin friction only, the latter being denoted as Sr. The implicit assumption is that the hydraulic radius used in the 

Manning-Strickler relation has the same value for both form resistance and skin friction. As a result, the bedform 

correction could be represented as: 
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However, in the evolution of the empirical approach from equation (1) to equation (2), based on separate tests 

carried out to determine the criterion for particle incipient motion, MPM determined an alternative correction of the 

form: 

3432  

r

b

 

r K
K

S
S

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛  (13) 

Hence one is left with the ambiguous conclusion that the bedform correction of MPM is expressed in terms of the 

ratio Kb/Kr, raised to a power of either 4/3 or 2. Meyer-Peter and Müller (1948) resolved this ambiguity with 

recourse to the data, finding that an exponent of 3/2, i.e. a value in between 4/3 and 2, gave the best fit of the 

experimental data as per equation (2). This choice of exponent has the added advantage of allowing a Froude 
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similarity collapse that was successfully used to derive a universal bedload transport law based on runs that included 

uniform material and size mixtures, different values of specific gravity of the sediment, and cases both with and 

without the presence of bedforms. 

It is not the purpose of this paper to question the validity of this procedure for bedform correction, but to show 

that such a correction is not required when bedforms are absent. More specifically, it is shown that the use of what is 

in hindsight an inappropriate parameterization for flow resistance in these cases, led Meyer-Peter and Müller to the 

erroneous inclusion of an additional correction (reduction) of the effective bed shear stress in the form of (Kb/Kr)3/2 

for the plane-bed transport conditions. The parameterization for flow resistance used here became available only 

well after the work of MPM was published (Meyer-Peter and Müller 1948). 

Meyer-Peter and Müller (1948) stated that the “evaluation of the measurements of the Laboratory confirms for 

all tests the fully developed turbulence, so that the coefficient of particle roughness may be calculated with sufficient 

accuracy from” 

61
90

26
 r D

K =  (14) 

Equation (14) is based on the results of the famous set of experiments on pipe flow by Nikuradse (NACA 1950, 

which is an English translation of a document dating from 1933), who found that the bed roughness height, ks, can 

be estimated as follows: 

90Dks =  (15) 

Van Rijn (1984) and Millar (1999), for example, have used results from several tests carried out for a range of grain 

sizes including both gravel and sand particles to demonstrate that this one-to-one scaling is misleading. Chien and 

Wan (1999) reinforce this claim by arguing that the procedure by which Nikuradse glued uniform sand particles to 

the pipe walls resulted in an effective roughness smaller than the actual size of the sand particles. An alternative, 

better tested parameterization is given by Kamphuis (1974), who concluded that for large values of the ratio of H to 

D90 (H/D90 ≥ 10; see Kironoto and Graf 1994) and fully developed turbulent flow (u*
bks/ν ≥ 70; see Schlichting 

1979), a better approximation for ks is: 

902 D ks =  (16) 

124 out of the 135 runs comprising data sets ETH-up and ETH-nup complied with the criterion of H/D90 ≥ 10, and 

all 135 tests corresponded to completely rough turbulent flow. As a result, the evaluation of the bed roughness 
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height in the form of equation (16) is used from here onwards, unless explicitly stated in a different form. It should 

be noted here that the justification for amending equation (15) to equation (16) was not yet available to Meyer-Peter 

and Müller when they developed their relations of 1934 and 1948. 

It is of interest to note as well that Jäggi (1984) reached a conclusion that is nearly equivalent to that of 

Kamphuis (1974). In particular, he modified the constant in equation (14) from 26 to a value between 20 and 22. If 

the form of equation (14) is retained but the transformation D90 → ks is made, equation (14) now takes the form: 

61 

26

s
r k

K =  (17) 

Introducing equation (16) into equation (17) yields: 

61 
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i.e. a form very close to that obtained by Jäggi (1984). 

It is well known the vertical profile of flow velocity for turbulent open-channel flow may be represented by a 

logarithmic law, leading to the Keulegan relation (Keulegan 1938) for depth-averaged flow velocity, u, in the 

hydraulically rough regime. Making the transformations H → rb and u* → u*
b (where u* = shear velocity), in order 

to incorporate the sidewall correction of Vanoni and Brooks presented in the previous section, the Keulegan relation 

can be expressed as: 
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where CZ = dimensionless Chezy resistance coefficient, is defined in the following way: 

b
Z u

uC ∗=  (19b) 

and κ = 0.4 denotes the Karman constant. It should be noted that in analogy to the Manning-Strickler coefficient of 

roughness, a larger value of CZ implies a smaller resistance to the flow. It is also important to note that the original 

flow resistance relation proposed by Keulegan (1938) was based on the definition of ks given in equation (15), 

whereas here it is based on the improved definition of ks given in equation (16). 

The relation (14) used by MPM to evaluate flow resistance can be reduced to the following form with the aid of 

equation (16) for the bed roughness height, and of equation (19b) for the definition of CZ: 
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It has long been known that the Manning-Strickler power form of bed resistance given in equation (20) yields results 

that are very similar to those of the Keulegan form in equation (19a). One must ask, however, if (20) really does 

provide an accurate evaluation of bed resistance in the absence of bedforms. In order to test this, Figure 5 presents a 

comparison of the estimates provided by equation (20) against the measured values of the data set ETH-up for which 

bedforms were absent, as well as the data set ETH-nup for which bedforms were present in some cases. It is seen in 

this figure that nearly all the data for CZ plot below (20), implying that the boundary resistance is higher than 

predicted by this equation (20). In other words, with sidewall effects removed through H → rb and u* → u*
b, an 

observed value of CZ that is smaller than the one estimated via the equation (20) would mean that a component of 

flow resistance due to bedforms should be present in addition to the one associated with skin friction alone. Figure 5 

thus indicates a measurable effect of bedforms not only in the results of data set ETH-nup for which bedforms may 

have been present, but also for data set ETH-up for which bedforms were verifiably absent! The implication is a 

contradiction; that is, correcting the boundary shear stress in equation (2) to extract only that portion obeying 

equation (20) results in a measurable correction for bedforms that are not actually present. 

MPM argue somewhat unconvincingly that even in the absence of bedforms, the resistance offered by a mobile 

plane bed may be larger than that of a static plane bed, so accounting for the discrepancy in Figure 5. While this 

might in fact be true under certain regimes of bedload transport, it is not true in the case of the data sets without 

bedforms used by MPM to derive their relation. The fact that equation (20) does indeed underpredict plane-bed 

resistance (i.e. overpredict CZ) can be demonstrated with reference to the fit of Manning-Strickler type to the 

Keulegan relation developed by Parker (1991): 

61

10.8
 

s

b
Z k

r C ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  (21) 

where ks is given by (16) of Kamphuis (1974) rather than by (15) of Nikuradse (NACA 1950). A comparison of the 

estimates obtained with the power-law (21) versus: (i) the data set ETH-up for which bedforms were absent, (ii) the 

data set ETH-nup for which bedforms were present in some runs, and (iii) the data set GIL-up for which bedforms 

were absent, is given in Figure 6. Also included in this figure is the logarithmic law (19a) of Keulegan in which ks is 

evaluated from (16). It is seen that (21) provides an excellent fit of the data from the cases for which bedforms were 
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not observed, while the experimental values of CZ remain, as expected, smaller than those predicted by the power-

law (21) for the cases in which bedforms may have been present. The direct inference from this is that a resistance 

relation based on skin friction only, i.e. equation (21), is adequate and sufficient to explain the data for which 

bedforms were absent. That is, no bedform correction is needed to characterize the results of sets ETH-up and  

GIL-up. Given that Kb ≤ Kr in the original formulation of MPM, dropping the bedform correction means the whole 

curve presented in Figure 2 is shifted to the right. As a result, the parameters used to fit an equation to the data of 

Figure 2 must necessarily differ from those of equation (2), i.e. the form due to MPM. The resulting re-analysis is 

presented in the next section. 

Summarizing, the use by MPM of a parameterization of skin friction that does not properly account for flow 

resistance, i.e. equation (14) or equation (15), was the source of their need to include a bedform-correction for cases 

in which bedforms were verifiably absent. In this regard, Figure 6 shows that by using an appropriate flow resistance 

relation, i.e. equation (21) with the aid of equation (16), it is found that for the sets ETH-up and GIL-up:  

(a) bedforms were not observed, and (b) there is no discernible difference on the bed resistance of a mobile bed 

versus a static bed. 

 

Re-analysis of the data and amended MPM bedload transport relation 

Data sets ETH-up and GIL-up for which bedforms were absent are now re-analysed in the form of equation (2), but 

with: (i) the Vanoni-Brooks sidewall correction, and (ii) no correction for bedforms. All the experimental 

information used subsequently corresponds to lower-regime plane-bed equilibrium transport conditions, and uniform 

material in the gravel-size range only. 

Figure 7 presents the results of implementing the sidewall correction as per Vanoni and Brooks (Vanoni 1975). 

It can be easily seen that no correction may be necessary for channel aspect ratios, B/H, larger than 5.0. In many if 

not most experiments carried out in flume facilities, however, smaller values of B/H prevail. In such cases, omitting 

the sidewall correction might result in a significant overprediction of the bedload transport rate. Based on the data 

from MPM for instance, it is seen in Figure 8 that most of the tests correspond to a dimensionless excess shear stress 

(after applying the Vanoni-Brooks sidewall correction) ranging between 0.02 and 0.10. If no sidewall correction is 

applied for this range of shear stress, the estimate of the bedload transport rate would be larger by a factor of 1.27 to 

1.66 for the 65% of the experiments in which the effect of wall drag is at least 10% of the boundary shear stress 
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(according to Figure 7). Moreover, an overprediction factor of 1.45 to 2.10 would be obtained for the 39% of the 

experiments in which sidewall effects account for at least 15% of the boundary shear stress (according to Figure 7). 

Hence, a proper channel-averaged evaluation of bedload transport under controlled laboratory conditions should 

consider, as a minimum requirement, splitting the estimate of the boundary shear stress into bed and wall 

components, with only the first one used in the analysis of bedload transport. 

Working with values of the boundary shear stress acting on the bed region, τb, that have been corrected for 

sidewall effects with the Vanoni-Brooks method but not corrected for nonexistent form drag, two new power laws of 

the form of equation (2) have been developed. The first is presented as equation (22) below 

( ) 60.10470.093.4  
b   q −= ∗∗ τ  (22) 

where 

m

b
b  D g R ρ

τ
τ =∗  (23) 

It keeps the same value of 0.0470 used by MPM for the critical Shields number, while a new value of 1.60 for the 

exponent is obtained from a statistical fitting of the experimental results. The second is presented as equation (24) 

below 

( ) 50.10495.097.3  
b   q −= ∗∗ τ  (24) 

It keeps the same exponent of 1.50 used by MPM, whereas the “effective” critical Shields number of 0.0495 is 

obtained from a statistical fitting of the data. In either case, the final outcome of the re-analysis is a line of best fit 

that gives estimates of the bedload transport rate that are smaller than the ones predicted with equation (2) by a 

factor of 2.0 to 2.5. This is shown in Figure 8, where the famous relation of MPM appears as an upper envelope of a 

data set that is much better fit by either of the alternatives (22) or (24). 

It is again emphasized here that the goal of the present paper is not to propose a new or improved universal 

predictor of the bedload transport rate. Rather, the goal is to a) highlight the fact that the form drag correction of 

MPM is unnecessary in the context of the plane-bed transport data used to derive the MPM bedload transport 

relation, and b) modify the MPM bedload transport relation into a simpler form that uses no form drag correction for 

plane-bed conditions. 

Hunziker and Jäggi (2002) have previously indicated that bedload transport rates are overpredicted when the 

MPM relation is applied to sediment mixtures. They attributed this to the fact that the condition of equal mobility for 
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all grain sizes does not always hold, and as a result mobile-bed armor can develop in gravel-bed streams. A similar 

remark about the lack of accuracy of the MPM relation was given by Smart and Jäggi (1983) and Smart (1984), both 

in reference to the prediction of bedload transport rates for bed slopes steeper than 0.02. 

In the specific case of uniform bed sediment, Hunziker (1995) stated that the procedure used by MPM to correct 

for bedforms resulted in a form drag that is too large. The reason for this is the inaccurate parameterization of skin 

friction used by MPM, i.e. equation (14). This result is consistent with the earlier results of Jäggi (1984), Smart and 

Jäggi (1983), and also with the re-analysis presented here in the context of equation (20). So Hunziker (1995) 

decided to use the alternative bedform correction proposed by Yalin and Scheuerlein (1988). This correction was 

intended to account not only for bedform effects, but to consider also the influence of particles moving in bedload 

transport. The boundary shear stress is thus “bedform-corrected” even for cases in which bedforms are absent. 

Hunziker (1995) then proceeded to perform a new regression analysis of data from ETH for experiments on bedload 

transport of uniform gravel. This set included: (i) only the part of the data from ETH used by Meyer-Peter and 

Müller (1948) to develop their original relation (i.e. ETH-up, but not GIL-up), and (ii) the data from Smart and Jäggi 

(1983). As a result, Hunziker (1995) derived the following improved MPM-relation, i.e. equation (12) quoted in 

Hunziker and Jäggi (2002): 

( ) 50.1 
  05.0 5 −= ∗

−
∗

YSHq τ  (25) 

where τ*H-YS = dimensionless boundary shear stress, after including the same sidewall correction procedure used by 

MPM (Meyer-Peter and Müller 1948) but now implementing the bedform correction of Yalin and Scheuerlein 

(1988) instead of the original bedform correction used by MPM. This modified form of the MPM relation, i.e. 

equation (23), predicts transport rates that are 0.42 to 0.57 times that of the original relation (2) when applied to the 

range of boundary shear stresses covering the data sets ETH-up and GIL-up re-analyzed here. 

Equation (25) is similar to equations (22) and (24), and the main reason for the downward adjustment in 

transport rate offered by Hunziker (1995) is similar to that offered in the present work: MPM overcorrected for form 

drag. The valuable conclusion of Hunziker (1995) is, nevertheless, incomplete and clouded by extraneous factors. It 

is clouded by the implication that the re-evaluation of the MPM relation depends in some way on the data of Smart 

and Jäggi (1983), so the problem may not necessarily be with MPM’s analysis itself. It is incomplete in the sense 

that it indicates that some form of correction for form drag, the one according to Yalin and Scheuerlein (1988), is 

still required even for data without bedforms. The essential points of the present work are as follows: (a) in 
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contradistinction to MPM, Hunziker (1995) and Hunziker and Jäggi (2002), no form drag correction whatsoever is 

needed or should be used when analyzing the data without bedforms used by MPM; and (b) when the original data 

for plane beds used by MPM and only that data, i.e. without inclusion of other data sets such as Smart and Jäggi 

(1983), are re-analyzed without the unnecessary form drag correction, the result is a regression relation that predicts 

not more than half of the load that would be predicted by the original MPM bedload equation (2) in the absence of 

the MPM form drag correction. 

When applied to data sets ETH-up and GIL-up that correspond to lower-regime plane-bed transport of uniform 

bed material, the error norm of the bedload transport rates predicted with any of the two amended forms of the MPM 

relation presented in this paper is smaller than the one obtained with the modified relation of Hunziker (1995). The 

improvement on the prediction is particularly important for dimensionless transport rates ranging between 10-3 and 

10-1. In this range, the error norm associated to equation (22) for instance, is one-third smaller than that related to 

equation (25). 

 

Conclusions 

The bedload equation of Meyer-Peter and Müller (1948) includes a form drag correction that is intended to account 

for flow resistance of the stream bed due to factors other than skin friction (e.g., bedforms or moving bedload 

particles). MPM introduced this correction after finding that a flow resistance relation for skin friction, based on 

Strickler (1923) and Nikuradse (NACA 1950), underpredicted the overall bed resistance measured in their flume 

experiments. It is demonstrated here with recourse to only the data pertaining to plane-bed equilibrium transport of 

uniform sediment used by MPM, however, that this form drag correction is unnecessary for plane-bed conditions 

and should be dropped. Since the form of the MPM bedload transport equation itself that resulted from their data 

analysis is critically dependent upon this unnecessary form drag correction, a re-analysis of the data indicates a 

substantially revised form of MPM. 

Put simply, this revision can be described as follows in the context of lower-regime plane-bed transport. The 

original MPM formulation makes no error in obtaining a curve fit for the bedload transport rate. Instead, their curve 

fitting is forced to correct one error (including nonexistent form drag) by adding another (increasing the coefficient 

in the bedload transport relation). So if the practitioner is to use the original MPM bedload relation (with a 

coefficient that is about twice as high as it should be), then the (unnecessary and incorrect) form drag correction of 
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MPM must be used in order to obtain predictions that are faithful to the plane-bed data used by MPM. The 

practitioner will find it much easier to instead use one of the two modified MPM bedload relations proposed here 

(which for the most part involve a significantly lowered coefficient) in the absence of any form drag correction. The 

modified formulation is equally faithful to the original data, is simpler to use and has a firmer scientific basis. 

Hunziker (1995) had previously realized the existence of a problem with the analysis done by MPM. He 

attempted to “fix” (i.e. improve the validity of) the MPM-equation by: (i) adding a new set of data to the regression 

analysis (the one due to Smart and Jäggi 1983), and (ii) muting, but not eliminating the MPM correction for form 

drag. The re-analysis presented in this paper is different, in the sense that it does not attempt to “fix” the MPM-

equation, but instead results in its re-derivation. By using the same data used by MPM for runs without bedforms, 

and only that data, it is shown here that no correction for form drag is needed for these runs. More specifically, it is 

shown that the resistance relation satisfied for the mobile-bed experiments without bedforms used by MPM is 

identical to that observed for a static bed composed of the same material. 

In 1948 Meyer-Peter and Müller would not have had access to the revised resistance relations that demonstrate 

that no form drag correction was needed in their analysis of data on plane-bed transport. Here their data have been 

re-analysed in precisely the way that Meyer-Peter and Müller would have done it had they had access to the relevant 

information. 
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Notation 

The following symbols are used in this paper: 

B = channel width (m); 

CZ = dimensionless Chezy resistance coefficient; 

Dm = arithmetic mean diameter of the sediment (m); 

D90 = particle size for which 90% of the sediment is finer by weight (m); 

f = overall Darcy-Weisbach roughness coefficient for a composite channel cross-section; 

fb = Darcy-Weisbach roughness coefficient for the bed region; 

fw = Darcy-Weisbach roughness coefficient for the wall region; 

g = acceleration due to gravity (m/s2); 

H = water depth (m); 

K = overall Manning-Strickler coefficient of roughness for a composite channel cross-section (m1/3/s); 

Kb = Manning-Strickler coefficient of roughness for the bed region (m1/3/s); 

Kr = Manning-Strickler coefficient of bed roughness associated with skin friction only (m1/3/s); 

ks = (Nikuradse or Kamphuis) bed roughness height (m); 

Kw = Manning-Strickler coefficient of roughness for the wall region (m1/3/s); 

n = Manning’s coefficient of roughness (s/m1/3); 

qb = volume bedload transport rate of sediment per unit width (m3/s/m); 

qw = volume discharge of water per unit width (m3/s/m); 

q'w = volume discharge of water per unit width, including a correction for sidewall effects (m3/s/m); 

q* = dimensionless volume bedload transport rate per unit width (Einstein number); 

R = submerged specific gravity of the sediment; 

r = hydraulic radius (m); 

rb = hydraulic radius for the bed region (m); 

Re = Reynolds number; 

S = slope of the energy grade line; 

Sr = component of the energy slope related with skin friction; 

u = mean flow velocity (m/s); 
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u* = shear velocity (m/s); 

u*
b = shear velocity for the bed region (m/s); 

κ = Karman constant; 

ν = kinematic viscosity of water (m2/s); 

ρ = density of water (kg/m3); 

ρs = density of the sediment (kg/m3); 

τb = boundary shear stress for the bed region (Pa); 

τ0 = boundary shear stress for a hydraulically wide-open channel flow (Pa); 

τ* = dimensionless boundary shear stress (Shields number); 

τ*b = sidewall-corrected dimensionless boundary shear stress; 

τ*H-YS = dimensionless boundary shear stress corrected according to Hunziker (1995). 
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Figure captions 

Figure 1 Reproduction of the data sets ETH-up and GIL-up in the form of equation (1), for uniform material 

and lower-regime plane-bed equilibrium transport conditions. 

Figure 2 Reproduction of the data sets ETH-up and ETH-nup in the form of equation (2), for normal flow 

conditions, with and without bedforms, and including the sidewall and bedform corrections of MPM. 

Figure 3 Plots of the Manning-Strickler coefficient of roughness for the wall region, Kw, as a function of:  

(a) water discharge per unit channel width, qw, and (b) channel aspect ratio, B/H. Data used for plot 

include results from ETH-up and ETH-nup. No correlation is apparent in either case. 

Figure 4 Variation of the Darcy-Weisbach roughness coefficient for the wall region, fw, as a function of:  

(a) water discharge per unit channel width, qw, and (b) channel aspect ratio, B/H. Data used for plot 

include results from ETH-up and ETH-nup. 

Figure 5 Comparison of flow resistance measurements for the data sets ETH-up and ETH-nup against 

equation (20). 

Figure 6 Comparison of flow resistance measurements for the data-sets ETH-up, GIL-up and ETH-nup 

against the logarithmic law (19a) of Keulegan and Parker’s form (21) of Manning-Strickler. 

Figure 7 Results of the Vanoni-Brooks sidewall correction for the MPM and GIL data sets in which bedforms 

were not observed, as a function of channel aspect ratio, B/H. 

Figure 8 Comparison of original empirical relation (2) proposed by MPM, and its amended version (22) 

recommended for the case of lower-regime plane-bed normal flow equilibrium transport conditions. 
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Figure 3 
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