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ABSTRACT 

Turbidity currents often carve canyons into the continental slope, and then deposit submarine fans 

on lower slopes farther downstream.  It has been hypothesized here that this slope decline can 

cause a turbidity current to a) undergo an internal hydraulic jump near the canyon-fan transition, 

and b) leave a depositional signal of this transition.  These hypotheses are studied with a 

numerical model.  Rapidly depositing turbidity currents need not undergo a hydraulic jump at a 

slope break.  When a jump does occur, it can leave a depositional signal in terms of an upstream-

facing step.  A previous attempt to capture this signal failed because the current was treated as 

purely depositional.  In the present model both sediment deposition and entrainment are included.  

An upstream-facing step appears when deposition dominates erosion.  The step requires 

entrainment since the deposition rate is continuous through the jump, whereas the sediment 

entrainment rate is not.  Therefore, the step is caused by enhanced net deposition due to reduced 

entrainment rate across the jump.  Under certain circumstances, a single step can be replaced by a 

train of upstream-migrating cyclic steps, each separated by a hydraulic jump.  The numerical 

model is verified against experiments, and then applied at field scale. 

 

1. Introduction 

Turbidity currents constitute a major mechanism for the transport of sediment brought in by rivers 

or littoral drift to the ocean floor.  On relatively steep slopes they can be sufficiently erosive to 

excavate submarine canyons (e.g. Inman et al., 1976, Parker et al,. 1986, Normark & Piper, 

1991).  Bed slope drops off down the canyon, and eventually the canyon gives way to a 

submarine fan.  This is shown for the Amazon canyon-fan system in Figure 1 (Pirmez, 1994; 

Pirmez & Imran, 2003).  The Amazon Submarine Canyon has a length of about 130 km from 
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shelf break to canyon-fan transition, over which it has an average bed slope near 0.008.  The 

dominant channel on the Upper Amazon Fan extends for another 430 km downstream of this 

transition, over which it has an average bed slope near 0.004.  Submarine fans are commonly 

found at and beyond the transition between the continental slope and rise (Bouma et al., 1985); 

they parallel subaerial fans in many ways. 

The point at which a submarine canyon debouches onto its associated submarine fan is 

generally thought to be associated with a decrease in channel slope sufficient to cause a transition 

from an overall net erosional environment upstream to an overall net depositional environment 

downstream.   It has been hypothesized that the turbidity currents responsible for the genesis of 

the submarine canyon and fan might display an internal hydraulic jump near the slope transition 

(e.g. Menard, 1964; Van Andel & Komar, 1969; Mutti, 1977; Russell & Arnott, 2003).   

An internal hydraulic jump is a zone of rather sharp transition such that a dense bottom 

flow upstream of it is supercritical (bulk Richardson number less than a value near unity; 

densimetric Froude number greater than a value near unity), and the same bottom flow 

downstream of it is subcritical (bulk Richardson number greater than a value near unity; 

densimetric Froude number less than a value near unity).  Relatively speaking, supercritical flows 

are swift and thin, exerting a high shear stress on the bed, and subcritical flows are slow and 

thick, exerting a low shear stress on the bed.  The rather abrupt drop in bed shear stress due to the 

jump might be expected to be evidenced in the nature of the sediment deposit left by a turbidity 

current in the vicinity of a hydraulic jump. 

The nature of the hydraulic jump and the resultant deposits, i.e. turbidites, have been the 

subject of speculation as well.  Menard (1964) reasoned that the development of levees bordering 

deep-sea channels is caused by the thickening of a turbidity current after a hydraulic jump.  Van 

Andel & Komar (1969) interpreted the characteristics of sediment deposits in enclosed basins in 

terms of the hypothesized occurrence of a hydraulic jump.  Mutti (1977) suggested that a turbidity 

currents undergoing a change in slope drops excess sand due to a hydraulic jump, thus causing 

characteristic turbidites just downstream.  Russell & Arnott (2003) provided stratigraphic 

evidence for a hydraulic jump in a subaqueous glaciolacustrine fan succession in the Oak Ridges 

Moraine, southern Ontario, Canada.  They note the following: “Erosion of large unconsolidated 

friable sand intraclasts was probably related to scouring in a hydraulic jump or scouring at the 

base of the flow and then followed by rapid deposition. The rapid dissipation of flow energy and 

generation of high volumes of entrained sediment some distance downflow of a hydraulic jump 

would have developed stratified flows, causing rapid sedimentation.”  This description suggests 
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that one signature of a subaqueous hydraulic jump might be an upstream-facing step associated 

with rapid deposition downstream of the jump. 

Internal hydraulic jumps associated with salinity or temperature-induced stratification 

have been studied extensively (e.g. Wilkinson & Wood, 1971; Stefan & Hayakawa, 1972; Wood 

& Simpson, 1984; Baddour, 1987; Rajaratnam et al., 1988).  Internal hydraulic jumps in 

sediment-driven flows have received rather less attention.  They remain unobserved in the field.  

As for observations at experimental scale, until recently only the study discussed in Garcia (1989, 

1993) and Garcia & Parker (1989) specifically focused on internal hydraulic jumps of turbidity 

currents.  (But see Lamb et al., 2004, and Toniolo, 2003 for recent experimental studies on 

internal hydraulic jumps in confined basins.) 

The numerical model presented here is employed to investigate at experimental scale: (i) 

the limits on the formation of internal hydraulic jumps in turbidity currents near a slope break; 

and (ii) the role of internal hydraulic jumps in the mechanics of sediment deposition and erosion, 

and in particular whether a hydraulic jump can be inferred from the depositional record.  

Experimental data of Garcia (1993) are used first to calibrate and verify the numerical model.  

The model is then applied to various scenarios of turbidity currents developing along a sloping 

bed.  A field-scale simulation provides insight into the characteristics of internal hydraulic jumps 

and associated depositional signatures resulting from generic field-scale flows.  

2. Model formulation 

2.1 Geometric configuration 

Hydraulic jumps, internal or otherwise, are often driven by a bed slope that decreases in the 

streamwise direction.  The change in slope does not need to be abrupt in order for a hydraulic 

jump to form.  In the present work, however, the initial bed profile is simplified to an upstream 

portion with constant, positive slope joining continuously to a downstream portion that is 

horizontal.  This bed configuration is shown in Figure 2.  The abrupt decrease in slope increases 

the likelihood of a hydraulic jump occurring in the computational domain.  The sloping upstream 

portion represents a loose surrogate for a submarine canyon, and the horizontal downstream 

portion is a loose surrogate for a submarine fan or abyssal plain. 

The width of the turbidity current is assumed to be constant in the present work.  In the 

field, a turbidity current debouching from a confined canyon onto an unchannelized fan can be 

expected to expand laterally.  The effect of this expansion is not included here.  In point of fact, 

many submarine fans are traversed by distinct, well-formed channels (e.g. Pirmez, 1994) which 

can act to limit lateral spread as the turbidity current forms a hydraulic jump. 
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2.2. Governing equations 

The relations used here to describe the development of an unsteady, one-dimensional turbidity 

current emanating from a submarine canyon and debouching onto a submarine fan are based on 

the original single-layer, depth-averaged model of Parker et al. (1986).  They involve integral 

statements of conservation of: water mass, downslope momentum, suspended sediment in the 

water column and bed sediment, expressed in the following respective dimensionless forms 

(Kostic & Parker, 2003a, 2003b).   
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The turbidity current is driven by excess density due to suspended sediment.  The suspension is 

assumed to be sufficiently dilute to allow the use of the Boussinesq approximation in the equation 

of motion (2), and to neglect the effect of hindered settling.  The deposition of suspended 

sediment on the bed and the erosion of bed sediment are assumed to occur concomitantly.  The 

Exner equation (4) describing the channel bed evolution is fully coupled with the parts of the 

model describing hydrodynamics and suspended sediment transport.   The dimensionless 

parameters in equations (1)–(4) are defined below. 

In the above relations t̂  is dimensionless time, x̂  is a dimensionless bed-attached streamwise 

coordinate, *û  denotes the dimensionless shear velocity, and Sv̂  denotes the dimensionless fall 

velocity of sediment, given by the respective relations 
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where x, t, *u  and vS are the corresponding variables in dimensional form.  In addition λ denotes 

bed porosity, and r0 is a dimensionless parameter relating the near-bed suspended sediment 

concentration to the layer-averaged value, here taken to be a multiplicative constant for 

simplicity.  The dimensioned dependent variables are the current depth h, the depth-averaged 
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velocity U, the depth-averaged volumetric concentration of suspended sediment C, and the bed 

elevation η; their corresponding dimensionless forms CUh ˆ,ˆ,ˆ and η̂  are defined as 

0000

ˆ,ˆ,ˆ,ˆ
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UU

h
hh ηη ====        (5b) 

where h0, U0, C0 are the values of h, U and C at the upstream boundary (near the head of the 

submarine canyon).  Ri0 is the inflow bulk Richardson number, given as 

2
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00
0 U

hCRgRi =      (6) 

where R denotes the submerged specific gravity of sediment, i.e. 1.65 for natural quartz. 

Shear velocity is related to layer-averaged flow velocity according to the following friction 

relation; 
22 ˆˆ Ucu D=∗           (7) 

where cD is a dimensionless friction coefficient.   

The fall velocity vS is calculated from the relation of Dietrich (1982), which can be 

expressed as 

( )pf RefR =           (8a) 

where 

νDRgDRe,RgDvR pSf ==        (8b) 

Here Rf is a dimensionless particle fall velocity (not to be confused with Sv̂ ), Rep denotes a 

particle Reynolds number, D is a characteristic grain size of the sediment, and ν denotes the 

kinematic viscosity of water. 

 The dimensionless parameter ew characterizes the rate of entrainment into the turbidity 

current of ambient water from above.  The following form is used for ew (e.g. Fukushima et al., 

1985); 
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The dimensionless parameter eS describes the rate of sediment entrainment into suspension by a 

turbidity current.  Two formulations are used here.  The formulation used at experimental scale is 

that of Garcia & Parker (1991, 1993): 
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In the above relations the constant a is equal to 1.3x10-7, and the constants α1 and α2 are given as 
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 The formulation of Garcia & Parker (1991, 1993) was developed with laboratory data and 

tested with field data for relatively small rivers.  Recently Wright & Parker (in press) have 

modified the formulation to cover the full range of field-scale rivers.  This latter formulation is 

here extended with information from Garcia & Parker (1993), and further adapted for application 

to turbidity currents at field scale; 
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ûZ 2

1
αα ∗=          (11b) 

and Sf denotes a friction slope, evaluated for the case of turbidity currents from the relation 

ĥĈ
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The adaptation used here concerns the coefficient p, which is used to characterize the degree of 

bed sediment strength, i.e. ability of the bed sediment to resist erosion.  The entrainment 

formulations of Garcia & Parker (1993) and Wright & Parker (in press) are based on field data for 

rivers and laboratory data for rivers and turbidity currents for which the bed consists of loose, 

non-cohesive sediment.  In the deep-water setting, however, it is common for muddy, and even 

sandy bed sediments to develop some degree of strength associated with consolidation.  This 

strength is often expressed in terms of numerous muddy layers sandwiched in between sandy 

layers.  As a result, marine sediments often cannot be treated as loose, non-cohesive material.  

The coefficient p includes this effect in a simple way; it is a free variable which takes the value 

unity for completely non-cohesive, loose material, and takes a value below unity when the bed 
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material is assumed to have developed strength through consolidation.  In the calculations at field 

scale presented here p is set equal to values less than or equal to unity. 

 An algebraic specification for the friction coefficient cD in (7) results in the “three-

equation” formulation of Parker et al. (1986), where the three equations in question are the ones 

that describe flow and sediment dynamics, e.g. (1), (2) and (3).  These relations admit self-

accelerating, or “ignitive” solutions, according to which a sufficiently swift flow entrains ever 

more sediment from the bed, so becoming ever swifter (Pantin, 1979; Parker, 1982).  Fukushima 

et al. (1985) and Parker et al. (1986) showed that this self-acceleration can result in such high 

rates of consumption of turbulent kinetic energy as sediment is entrained from the bed that flow 

becomes dynamically impossible.  They overcame this problem by adding one more equation 

describing the evolution of layer-averaged turbulent kinetic energy.  This equation takes the 

dimensionless form: 
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In the above relation 
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where K denotes the layer-averaged kinetic energy of the turbulence per unit mass. 

 Self-acceleration leads to ever-increasing values of the sediment entrainment coefficient 

eS in (12).  This sediment entrainment is accomplished by turbulence, and as can be seen from 

(12), results in a loss of turbulent kinetic energy as this energy is consumed in increasing the 

potential energy of the sediment so entrained.  In order to dynamically link the energetics of the 

flow described by (12) with the sediment entrainment relations (10) or (11), it is necessary to 

modify the closure hypothesis (7) to the form 

K̂û 2 α=∗           (14) 

where α is a dimensionless coefficient to be specified algebraically.  This relation specifically 

links the shear velocity, and thus the sediment entrainment rate, with the balance of turbulent 

kinetic energy.  If the entrainment coefficient eS becomes too high, K̂  is decreased in accordance 

with (12), which in turn reduces ∗û  and thus eS in accordance with (14) and (10) or (11), 

respectively.  Parker et al. (1986) refer to the formulation of the flow dynamics described by (1), 

(2), (3) and (12) as the “four-equation” model. 

 The term β in (12) describes the dissipation of turbulent kinetic energy by viscosity; 

Parker et al. (1986) specify the following form for it: 
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where ∗
Dc  is a prescribed parameter that may be equated numerically to the value of cD in the 

“three-equation” model.  It is important to realize, however, that the value of cD itself in the 

“four-equation” model is not a prescribed parameter, but is given from (7) and (14) as 
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In all calculations performed here α is set equal to 0.1, a value suggested by Parker et al. (1986). 

 The laboratory-scale flows simulated below are all highly depositive and show no 

tendency toward self-acceleration.  As a result, these are adequately treated with the “three-

equation” model of the flow and the sediment entrainment formulation of (10).  The self-

accelerational regime is specifically included in the simulations at field scale, so that both the 

“three-equation” and “four-equation” formulations for hydrodynamics and suspended sediment 

are used in the calculations, along with the sediment entrainment formulation of (11).  Both 

formulations are dynamically coupled with the Exner equation, i.e. (4), to capture the bed 

evolution of a submarine canyon-fan system in response to net sediment deposition from the 

current. 

2.3. Governing dimensionless parameters 

An inspection of the “three-equation” formulation of (1-10) reveals that any characteristic 

parameter N of the turbidity current flow field can be expressed as a function of the following 

dimensionless parameters: 

( )p,S,,C,r,c,vu,Uv,Re,RifN iDS*Sp λ000 0=      (17a) 

where Si denotes the initial bed slope of the upstream portion of the domain (i.e. the submarine 

canyon).  In accordance with the problem at hand, the analysis is restricted to underflows that are 

supercritical at the inflow boundary, i.e. Ri0 < 1.  At field scale, turbidity currents may also be 

expected to be supercritical as they move down a relatively steep submarine canyon (e.g. Komar, 

1971).  The coefficient of bed drag Dc  is in general a function of a turbidity current depth.  For 

one-dimensional turbidity currents with Reynolds number in the range [4.102,, 2.106] this 

coefficient can be inferred to take a value between 10-3 and 10-1  (Parker et al., 1987).  The 

multiplicative constant r0 defines a ratio of the near-bed volumetric concentration of suspended 
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sediment to the corresponding layer-averaged value.  Garcia (1989) has inferred values of r0 

ranging from 1 to above 2 based on experiments on turbid underflows.  A range of values for bed 

porosity λ is 0.2 – 0.8; porosity influences deposit thickness exclusively, without having any 

effect on the flow field or depositional signature.  In relation (17a), the dimensionless shear 

velocity Svu*  is replaced by the ratio Svu*∆ , where *u∆  is an estimate of the drop in shear 

velocity due to the transition in the flow regime associated with the hydraulic jump, as defined in 

more detail below.  Also, the particle Reynolds number Rep can be replaced by the particle fall 

velocity Rf.  In the “four-equation” formulation of (1-9) and (11-16) the parameter cD is replaced 

with its equivalent ∗
Dc , and the parameter α must be added to the list.  Therefore, the 

dimensionless parameters governing development of a turbidity current near a sharp canyon-fan 

transition are as follows: 

( )pSCrcvuUvRRifN iDSSf ,* ,,,,,,, 0000 ∆=       (17b) 

in the “three-equation” formulation, and 

( )α,,,,,,,,, *
0000 ,* DDSSf cpSCrcvuUvRRifN i∆=      (17c) 

in the “four-equation” formulation. 

2.4. Numerical formulation 

The modeling of turbidity currents developing along a sloping bed involves hyperbolic governing 

equations and one downstream-propagating boundary (i.e. the head of the current).  To cope with 

the latter, a deforming grid approach is adopted, and the moving boundary is fixed by means of a 

Landau transformation (Crank, 1984), such that the current front head is at the fixed point x* = 1: 
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The parameter ŝ  has one of three definitions depending upon the model execution.  The base 

definition is the dimensionless position of the turbidity current head, in which case no outflow is 

allowed beyond x∗ = 1.  In some implementations, however, ŝ needs to be fixed in space, so that 

outflow is allowed beyond x∗ = 1.  This condition occurs, for example, when the head of the 

turbidity current has flowed beyond the downstream end of the computational domain.  The value 

of ŝ is then either matched to the dimensionless length of the computational domain (e.g. an 

experimental flume), or determined in terms of a specified target concentration tĈ  (e.g. 0.1 % of 

0Ĉ ).   
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After introducing the conservative dimensionless variables hUq ˆˆˆ =  and hC ˆˆˆ =φ , and  

applying the transformation of Eq. (18), (1)-(3) of the “three-equation” model and (4) may be 

written in the following conservative form: 
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The set (19)-(22) with (10a-c) or (11a-c) comprise the essential formulation of the 

morphodynamic problem using the “three-equation” model of flow dynamics.  The problem is 

solved numerically for the four unknowns: CUh ˆ,ˆ,ˆ  and η̂ . 

Initial conditions include an initial bed profile interpolated to the grid 10 *
≤≤ x .  While 

the numerical model allows for arbitrary initial bed profile, the central case of interest is one 

consisting of an upstream region with constant, finite slope and a downstream region with 

vanishing slope.  Furthermore, primitive variables ĥ , Û and Ĉ are set equal to 1 at all nodal 

points within the initially specified length of propagation of the turbidity current ŝ .   

Boundary conditions are set by means of characteristic velocities for the flow, defined as 
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where c1 is the velocity resulting from the transformation of the coordinate system, c2 defines the 

rate at which particles are advected by the flow and c3,4 correspond to the forward- and backward- 

propagating wave speeds for the underflow analogs of shallow-water waves, respectively.  

Inspection of the characteristic velocities of Eqs. (23a-d) reveals the following. 
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For a supercritical inflow boundary three characteristics propagate into the flow domain, 

and thus the corresponding dependent variables must be specified. They are defined as 

( ) ( ) ( ) 1,1ˆ,1,1ˆ,1,1ˆ *** ====== τττ xCxUxh       (24a-c) 

At the outflow boundary the number of physical conditions is dependent upon the definition of 

the parameter ŝ .  If the propagation of a turbidity current head is of interest (recall that 

ŝ denotes the position of the head), two boundary conditions need to be imposed, independently 

of whether the outflow boundary is subcritical or supercritical.  In the model, the velocity of the 

last grid point is determined from the front velocity ŝ& , and its bed elevation is determined from 

the antecedent bed profile iη̂ , such that: 
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Once the turbidity current reaches some distance L̂  (defined in terms of a specified target 

concentration tĈ  or the length of the computational domain), no physical boundary condition is 

required for an outflow boundary, unless a downstream control is imposed there.  In the 

experiments of Garcia (1993) simulated here, the flume ended in a free outfall.  Thus, the 

underflow depth at the last grid point is equated to the critical depth corresponding to a bulk 

Richardson number of unity, such that  

( ) ( )
( )τ

ττ
,1ˆ

,1ˆ
,1ˆ

*
0

2*
*

=
===
xCRi

xUxh         (25c) 

The remaining variables are obtained from the flow field by means of first order extrapolation 

(Hirsch, 1990). 

The governing Eqs. (19)-(22), with the initial and boundary conditions of Eqs. (24)-(25) 

are solved using the QUICKEST method (Leonard, 1979), which is an explicit third-order 

accurate algorithm designed for highly advective unsteady flows.  Unphysical overshoots and 

undershoots associated with a hydraulic jump and the physical condition (25a) are clipped by the 

ULTIMATE limiter (Leonard, 1991).  The computational efficiency of the scheme is significantly 

improved by the introduction of time stretching accompanying grid stretching, thus maintaining 

the Courant number.  A more comprehensive discussion of the numerical method can be found in 

Kostic & Parker (2003a).  The physics of the present model, however, differ from those in the 

submodel of Kostic & Parker (2003a) pertaining to turbidity currents in two important ways; a) 
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the present model allows for entrainment of bed sediment by the turbidity current, whereas the 

flows of Kostic & Parker (2003a) are purely depositional, and b) Kostic & Parker (2003a) allow 

for partial driving of the underflow due to temperature stratification, whereas the present model 

does not. 

Since the above model based on the “three-equation” formulation is very similar to the 

model of Kostic & Parker (2003a), it is of use to note the following.  The present numerical 

model is verified using the experiments of Garcia (1989), as discussed below.  The model of 

Kostic & Parker (2003a) was verified by means of the experiments reported in Kostic (2001) and  

Kostic & Parker (2003b), which were conducted in the same facility as, and were in many ways 

similar to those of Garcia (1989).  The main difference is that the experiments of Kostic (2001) 

and Kostic & Parker (2003b) included a self-formed delta from which a plunging turbidity current 

formed. 

The extension to the “four-equation” model of flow dynamics is straightforward; (19), 

(21) and (22) are unaltered, (20) is amended to 
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and (12) is transformed with (18) to 
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where ϖ̂  is a new conservative dimensionless variable defined as hK ˆˆˆ =ϖ  

The initial condition for K̂  is set in the same way as for ĥ , Û and Ĉ ; i.e. K̂  is set equal to 1 at 

all nodal points within the initially specified length of propagation of the turbidity current ŝ .    

3. Verification of the numerical model 

3.1. Experiments of Garcia (1989) on hydraulic jumps near a slope transition 

The numerical model using the “three-equation” dynamic formulation was validated using an 

experimental study conducted by Garcia (1989) to elucidate the behavior of continuous, saline 

and turbidity currents near a canyon-fan transition.  The sediment entrainment formulation in all 
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simulations at experimental scale, both in this section and in Section 4, is that of Eqs. (10a-10c); 

i.e. that of Garcia & Parker (1991, 1993).  The bed is assumed to be freely erodible. 

Results pertaining to the experiments of Garcia (1989) are also reported in Garcia (1993) 

and Garcia & Parker (1989).  For the sake of brevity, these three papers are referred to as 

“GGGP” below.  The experimental flume was 30 cm wide and 70 cm deep.  A submarine canyon 

was modeled by a 5 m long inclined bed with a slope Si of 0.08 ( 06.4=θ ), followed by a 6.6 m 

long horizontal bed that represented the associated abyssal plain (Figure 2).  A free outfall at the 

end of the horizontal region acted as a downstream control.  The currents were allowed to 

develop until a quasi-steady state continuous flow was reached. 

The experimental program included conservative saline currents, turbidity currents driven 

by well-sorted sediment, turbidity currents driven by poorly-sorted sediment, and sediment-

entraining saline currents.  Of particular interest in regard to the analysis at hand are experiments 

reported in GGGP on internal hydraulic jumps in underflows driven by well-sorted sediment. 

The most important conclusions of these experiments can be summarized as follows:  

(1) Saline hydraulic jumps and jumps in fine-grained turbidity currents have similar 

characteristics.  

(2) The amount of water entrained by the flow while going through a hydraulic jump is small.  

Most of the water entrainment takes place in the jet-like, supercritical region before the jump, 

while the entrainment in the plume-like, subcritical regime is negligible.  This observation is 

in line with the conclusions on the dilution of heated water discharges at relatively low 

Richardson number (Wilkinson & Wood, 1971; Stefan & Hayakawa, 1972; Baddour, 1987). 

(3) The strength of an internal hydraulic jump, quantified by the ratio of the current thickness 

after the jump to that before it, is seen to take values similar to those predicted by the relation 

of Yih & Guha (1955) for jumps in stratified flows.  

(4) The most significant effect of the slope transition on the flow characteristics is the marked 

reduction of bed shear stress downstream of the hydraulic jump.  Garcia (1993) reports that 

the break in slope did not seem to cause any discontinuity in the depositional pattern of the 

currents capable of reaching the downstream end of the flume.  It is indicated below, 

however, that a very weak discontinuity is observable in at least one of the experiments. 

(5) There is a clear correlation between deposit thickness and grain size of the sediment driving 

the flow.  For similar inlet conditions, the coarser sediment generates a thicker proximal 

deposit that tapers more rapidly downstream.  The thickness of a deposit decreases roughly 

exponentially with distance from the inlet. 
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Table 1 lists the inlet conditions for the numerical simulations of a selection of the 

experiments of GGGP on hydraulic jumps near a canyon-fan transition.  Additional input 

parameters include bed friction coefficient cD = 0.01 and bed porosity λ = 0.5.  In all cases the 

time of simulation was equal to the run time of the experiment itself.  In addition, the parameter p 

3.2 Test of the numerical model 

The central focus of the experiments reported in GGGP is on the depositional pattern set up by 

quasi-steady-state turbidity currents undergoing an internal hydraulic jump; data pertaining to the 

early-stage setup of quasi-steady-state flow are not available.  Under quasi-steady-state conditions 

the current is continuous and the flow changes only very slowly due to the slowly changing bed 

configuration induced by sediment deposition. 

A numerical model must not only capture this quasi-steady condition, however, but also the 

more strongly time-dependent process by which this condition is set up.  That is, it must in 

addition capture a) the propagation of the front out of the domain, b) the initial and time-evolving 

response of the current to the break in slope and c) the setup of the internal hydraulic jump. 

In order to demonstrate that the numerical model reported here can indeed capture these 

features, simulations are performed using the experimental conditions of run NOVA1 reported in 

Garcia (1989).  Choi & Garcia (1995) used the conditions of run NOVA1 to demonstrate the 

ability of their numerical model to capture the salient features of time-evolving turbidity currents 

near slope breaks; these conditions are used to the same end here.  In the calculations presented 

here ro is set equal to unity. 

Run NOVA1, which employed a sediment with a characteristic size D of 4 µm, was 

continued for 2400 s (40 minutes).  The first 18 minutes of the run were consumed by the setup of 

a quasi-steady-state flow.  During this early period the front of the turbidity current ran out to the 

end of the tank and flowed over an invert into a larger damping tank, and a distinct hydraulic 

jump near the slope break gradually came into being. 

The predictions of the numerical model can be characterized in terms of a) the elevation ξ of 

the interface between the turbidity current and the ambient water above, given as 

h+=ηξ           (28) 

and b) the densimetric Froude number Frd, where Frd and the corresponding bulk Richardson 

number Ri are defined as 

2
2

U
ChRgFrRi,

RgCh
UFr dd === −       (29a,b) 
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These predictions are shown in Figure 3a (elevation of the interface between the turbidity 

current and the ambient water above) and Figure 3b (densimetric Froude number).  As the 

underflow hits the break in slope, it decelerates considerably, and therefore thickens.  Time is 

required, however, for this thickening to sharpen into a distinct hydraulic jump.  After a quasi-

steady flow is set up, it changes in time only in response to the gradual deposition of sediment on 

the bed.  The numerical model predicts a distinct hydraulic jump with a clear transition from 

supercritical (Frd > 1 or Ri < 1) to subcritical flow (Frd < 1 or Ri > 1) well before the end of the 

run, as seen in Figures 3a and 3b.  The results shown therein are not greatly different from those 

shown in Choi & Garcia (1995). 

In Figures 4a,b the present model is tested against experimental data from run NOVA2 of 

GGGP for layer-averaged concentration C, layer-averaged flow velocity U and the elevation ξ of 

the interface between turbid and clear water.  The run in question again employed material with a 

characteristic grain size of 4 µm.  The duration of the run was 40 minutes; input data are given in 

Table 1.  Shown in Figure 4a are measured data for ξ versus streamwise distance x; Figure 4b 

shows U and C versus x.  These data were taken toward, but not precisely at the end of the run. 

Also shown in Figures 4a and 4b are corresponding numerical results from the predictions of 

the present model at the end of the run, as well as those reported in Choi & Garcia (1995).  In 

general the both the present model and that of Choi & Garcia (1995) fit the data reasonably well.  

A point of difference is that the measured hydraulic jump in Figures 4a and 4b appears to be more 

diffuse than that predicted numerically.  This is likely simply due to the fact that in a layer-

averaged approach, a hydraulic jump is manifested as a shock, whereas in reality the jump is 

dispersed over a streamwise length corresponding to a few current thicknesses. 

The present model differs from that of Choi & Garcia (1995) in one important way; the 

dimensionless sediment entrainment rate es is retained in the present model, but dropped in that of 

Choi & Garcia (1995).  It will be shown below that retention of this term is essential in order to 

predict a depositional signal of an internal hydraulic jump.  In the event, for the conditions of run 

NOVA1 and NOVA2 entrainment was found to play a negligible role in the present model, so 

justifying a posteriori the assumption used by Choi & Garcia (1995) to model these runs. 

Garcia (1993) specifically notes that “the turbidity currents driven by 4 µm sediment showed 

little tendency to deposit either in the model canyon or on the model fan…”  The present 

numerical model is in agreement with this observation, predicting negligible deposition of 

sediment anywhere in the simulations of runs NOVA1 and NOVA2. 

In addition to the runs NOVA1 and NOVA2 conducted with 4 µm sediment, also included in 

Table 1 are the GGGP runs DAPER1, DAPER4 and DAPER7 conducted with 9 µm sediment, 
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runs GLASSA2, GLASSA5 and GLASSA7 conducted with 30 µm sediment, and runs 

GLASSB1, GLASSB2 and GLASSB3 conducted with 65 µm sediment.  These experiments were 

simulated with the present model in order to test numerical predictions against experimental data 

for deposit thickness per unit bed area; the results are summarized below. 

Figures 5a, 6a and 7a illustrate the measured and computed streamwise variation in sediment 

mass deposited per unit bed area by turbidity currents driven by 9, 30 and 65 µm sediment 

respectively.  Both the observations and calculations pertain to the end of each run.  The best fit 

with experimental observations was attained with r0 = 1 for the runs with 9 and 30 µm sediment, 

while for the currents with 65 µm sediment r0 is set equal to 2.  These choices appear reasonable, 

since the sediment concentration profiles of fine-grained underflows show a tendency to be more 

uniformly distributed in the vertical.  The agreement between the experimental data and the 

present numerical model is generally very good. 

The deposits generated by 9 µm currents were weakly depositional, having almost uniform 

thickness along the model canyon and fan.  On the other hand, 30- and 65-µm currents created 

deposits that were strongly depositional, and displayed roughly exponential decreases in thickness 

with distance from the sediment source.  According to GGGP, the break in slope did not seem to 

cause any discontinuity in the depositional pattern of those currents which were capable of 

reaching the downstream end of the fan.  Yet, the numerical simulations of experiments that 

involved an internal hydraulic jump reveal a modest but clear depositional step associated with a 

drop in shear stress right after the jump.  That is, the deposit thickens from the upstream to the 

downstream side of the jump.  For example, in the case of run DAPER4 the simulated deposit 

mass per unit bed area showed an increase of 0.0053 g/cm2 across the jump, and for run DAPER7 

the increase was 0.076 g/cm2. 

It is value to ask whether or not any such depositional signal was observed in the data.  The 

only run that seems to show this increase is run DAPER 7 (Figure 5a), where the step (denoted 

with an arrow, and illustrated more clearly in an inset) is near the predicted size.  In the case of 

run DAPER 4, the predicted step is sufficiently small that even if real it would not have been 

clearly seen in the data.  There is no evidence of a depositional signal in the data for the 30 µm 

and 65 µm sediment.  The data and numerical results for run DAPER7 thus provide the first hint 

that under the right conditions a hydraulic jump might leave a depositional signal.  The issue is 

addressed with further numerical experiments below. 

Figures 5b, 6b and 7b show the predicted interface elevations ξ for turbidity currents driven 

by 9, 30 and 65 µm respectively, and the Figures 5c, 6c and 7c illustrate how the corresponding 



 

 17 

densimetric Froude numbers Frd vary along the model canyon and fan. The weakly depositional 

9-µm turbidity currents were both predicted and observed to reach the end of the model fan at x = 

11.6 m.  They were supercritical along the canyon, and subcritical on the fan, with a distinct 

intervening hydraulic jump from supercritical flow (Frd > 1) to subcritical flow (Frd < 1), as 

shown in Figures 5b,c. 

The underflows driven by 30 µm sediment show a tendency to drop the majority of their 

suspended load close to the inlet (Figure 6a).  They were predicted to be dense enough to reach 

the model fan, while continuously decelerating and thickening after the slope break (Figure 6b).  

The plot of densimetric Froude number given in Figure 6c, however indicates that they reached 

the downstream invert at the end of the flume at x = 11.6 m without going through an internal 

hydraulic jump . 

Numerical simulations indicated that the very strongly depositional turbidity currents 

generated by 65 µm sediment (Figure 7a) were unable to preserve their identity.  That is, the 

predicted layer-averaged concentration of suspended sediment was predicted to drop below 0.1 % 

of the inlet value before the flow reached the end of the flume.  The numerical calculations 

indicated that this condition was reached at x = 5.38 m for run GLASSB1, x = 5.37 m for run 

GLASSB2 and x = 5.95 m for run GLASSB3.  The densimetric Froude number of each of these 

flows was predicted to increase continuously in the streamwise direction, (Figure 7c), so that no 

hydraulic jump was manifested (Figure 7b).  

3.3 Implications of the test of the numerical model 

The above test of the numerical model revealed several features worth emphasizing.  Garcia 

(1993) specifically notes that the experiments with 4 µm and 9 µm sediment displayed hydraulic 

jumps, whereas those with 30 µm and 65 µm did not.  In addition, he suggests that the currents 

with 65 µm sediment did not reach the end of the flume.  The present numerical model produces 

results that agree with all of these observations, and is able to predict the evolution of the flow 

whether or not it goes through a hydraulic jump.  It should be noted that Choi & Garcia (1995) 

also did not obtain a hydraulic jump in their numerical model of the experiments of Garcia (1993) 

with the 30 µm material. 

In order to interpret the results, consider a turbidity current driven by appropriately fine 

sediment that undergoes a hydraulic jump near a slope break.  Both the experiments of GGGP 

and the present model predict that with all other factors equal, as grain sizes coarsens the strength 

of the jump should weaken, until with sufficiently coarse sediment the flow traverses the slope 



 

 18 

break with no jump whatsoever, the flow becoming ever more depositional and supercritical as it 

propagates downstream.   

Finally, a comparison of the experimental and numerical results for run DAPER7 provide 

the first hint that hydraulic jumps may leave a detectable depositional signature in terms of a 

downstream increase in bed elevation. 

4.  Numerical study of hydraulic jumps near slope breaks at experimental scale 

4.1. Some useful dimensionless parameters 

Having found that the numerical model can reproduce the salient features of the internal hydraulic 

jumps of GGGP, the model can now be extended to a parametric study of hydraulic jumps.  It is 

shown below that slope breaks can under the right circumstances produce both well-defined 

hydraulic jumps and clear depositional signatures.  In this section simulations are conducted at a 

scale similar to that of the experiments of GGGP; an extension to field scale is discussed in a 

subsequent section.  In addition to the densimetric Froude number Frd and associated bulk 

Richardson number Ri which were previously introduced, several dimensionless parameters 

introduced below are useful in characterizing the results of the numerical simulations. 

 Turbidity currents are non-conservative density underflows because the agent of the 

density difference, sediment, may be eroded into or deposited from the current.  Density 

underflows that receive their density difference from e.g. dissolved salt are, on the other hand, 

conservative.  Such currents can attain an equilibrium, or normal flow on a constant slope with 

the normal densimetric Froude number Frdn given by the relation (Ellison & Turner, 1959) 

f
dn c

SFr =           (30a)  

Here S denotes the bed slope and  cf  is given as 
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12         (30b) 

Even though turbidity currents do not achieve the equilibrium of conservative density underflows, 

(30a) proves useful in analyzing the numerical results. 

The Shields number is a dimensionless bed shear stress that characterizes the degree to 

which the flow can mobilize the bed sediment.  It is defined as 
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(31a) can be rearranged with the use of (8b) to yield the form  
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The incremental change *τ∆  in Shields number associated with the change ∆u∗ can be similarly 

defined as 

2

**





 ∆
=∆ f

S

R
v
uτ          (31c) 

Here *τ∆  denotes the drop in Shields number calculated as a difference between the average 

Shields number in the supercritical region just upstream  of a hydraulic jump and that in the 

subcritical region immediately downstream, and *u∆  denotes the corresponding drop in shear 

velocity.  This formulation is employed to analyze the relation between the drop in Shields 

number across a jump and the associated depositional signature. 

4.2. Numerical simulations 

Several scenarios for turbidity currents developing along a sloping bed were simulated 

numerically in order to analyze at experimental scale the effect of dimensionless parameters in 

(17b) on the formation of an internal hydraulic jump and a corresponding depositional signature.  

All calculations at experimental scale were performed using the “three-equation” model for flow 

dynamics and suspended sediment.  With a single exception reported at the end of this section, 

the modeled 1D canyon-fan system had a structure identical to that of the experiments reported in 

GGGP; i.e an upstream “canyon” region with a length of 5 m and an initial slope Si ≥ 0, followed 

by a horizontal downstream “fan” region with a length of 6.6 m. 

4.2.1. Effect of the slope break on the depositional signature 

It is value to note here that the experiments reported in GGGP involve a relatively steep 

submarine canyon followed by a horizontal abyssal plain.  The presence of a slope break was to 

ensure the occurrence of hydraulic jumps within the experimental domain.  Also, the position of 

internal hydraulic jumps in turbidity currents driven by 4 and 9 µm sediment happened to loosely 

coincide with the position of the slope break.  Therefore, any depositional signature associated 

with the jump would be expected to appear to be at or near the location of the canyon-fan 

transition.  The results of numerical simulations presented below will elucidate three different 

scenarios related to the presence of a slope break: 
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1. The internal hydraulic jump occurs upstream of the slope break, in which case the major 

depositional signature is associated with the jump, and a minor one, which is often 

indiscernible or absent, is associated with the slope break. 

2. The internal hydraulic jump occurs downstream of the slope break, in which case the 

major depositional signature is associated with the break and a minor one with the jump.  

3. The internal hydraulic jump develops at the location of the slope break, in which case 

only one depositional signature is manifested. 

4.2.2. Effect of the initial slope of the model canyon  

The streamwise bed slope of submarine canyons can vary from under 0.01 (Amazon Submarine 

Canyon; Pirmez, 1994) to at least 0.19 (Rupert Inlet; Hay, 1987a,b; see also Barnes & Normark, 

1985).  The slope of a submarine fan tends to be substantially less than that of its associated 

canyon (e.g. Amazon Submarine Fan; Pirmez, 1994).  Here, the influence of the initial slope Si of 

the model canyon is investigated for five different slopes, i.e.; 0, 0.04, 0.08, 0.12 and 0.26.  The 

model input parameters are: h0 = 3 cm, U0 = 8.3 cm/s, C0 = 0.003, D =15 µm, R = 1.65, water 

temperature T = 260, and run time = 30 min.  Note that these numbers include values that fall 

within the range of the experiments reported in GGGP. 

Figures 8a and 8b document the relation between the canyon-fan transition and the flow.  

A hydraulic jump is apparent for all values of initial canyon slope Si; its position is demarcated by 

the point in Figure 8b where the densimetric Froude number makes the transition from a value 

greater than unity to a value less than unity.  In the case of a vanishing canyon slope Si a 

hydraulic jump forms not far downstream of the inlet.  For all other values of Si the hydraulic 

jump is mediated by the break in slope at x = 5 m.  For the case Si = 0.04 the hydraulic jump 

occurs just upstream of the slope break at x = 5 m.  As Si increases beyond 0.04, the hydraulic 

jump is pushed progressively farther downstream; in the case Si = 0.26 the jump occurs about 3.5 

m beyond the slope break.  When the jump occurs downstream of the slope break, the flow first 

responds to the slope break with a gradual decline in densimetric Froude number, and then goes 

through a more abrupt decline in the vicinity of the hydraulic jump.  It can be seen in Figures 8a 

and 8b that an increase in initial canyon slope Si results in a swifter turbidity current that 

decelerates more slowly, pushing the hydraulic jump farther downstream. 

The patterns in densimetric Froude number evident in Figure 8b are mirrored in terms of 

the patterns of variation in the Shields number of Figure 8c.  The Shields number drops abruptly 

due to the hydraulic jump when it occurs upstream of the slope break.  When the hydraulic jump 
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occurs downstream of the slope break, the Shields number first drops gradually in response to the 

slope break and then abruptly at the hydraulic jump. 

The resulting deposits are documented in Figure 8d.  The deposit thickness is 

characterized in grams/cm2; at a porosity of 0.5, 1 gram/cm2 corresponds to a deposit thickness of 

0.755 cm.  Several notations have been included in order to clarify the features of Figure 8d.  A 

vertical line has been inserted at the point of the slope break (x = 5 m).  The position of the point 

within each hydraulic jump where Frd = 1 is denoted with an arrow.  Finally, the two nodes 

demarcating an abrupt downstream change in bed elevation near the hydraulic jump are denoted 

with an ellipse. 

In the case Si = 0 a depositional signal is manifested in terms of an abrupt decrease in bed 

slope at the location of the jump (ellipse). No depositional signal is evident at x = 5 m because 

there is no slope break there.  In all other cases a slope break is present at x = 5 m, and a 

depositional signal can be discerned in its vicinity in terms of a zone where bed elevation 

increases sharply in the downstream direction (ellipses).  That is, the depositional signal takes the 

form of a backward-facing step. 

The depositional signal is weakest for the smallest finite initial upstream slope Si of 0.04 

and is strongest for the largest value Si = 0.26.  At Si = 0.04 the hydraulic jump begins just 

upstream of the slope break (Figure 9b) and the depositional signal occurs just upstream of it as 

well (ellipse).  As Si increases above this value the hydraulic jump is pushed farther downstream, 

and the signal devolves into two parts.  The first part is a relatively diffuse, high-amplitude 

backward-facing step associated with the slope break itself, and the second part is a relatively 

sharp, low-amplitude backward-facing step (ellipse) associated with the resulting hydraulic jump 

(arrow), which is in turn driven by the slope break. 

It is thus seen from Figure 8d that an abrupt slope break can leave two depositional 

signals; a) a relatively diffuse backward-facing step associated with flow deceleration 

downstream of the slope change, and b) a more abrupt backward-facing step associated with the 

hydraulic jump.  Both signals are ultimately driven by the slope break.  When the momentum of 

the flow is insufficient to maintain supercritical flow over a bed of vanishing slope, the two 

signals merge into one.  When the momentum of the flow is sufficient to drive it well into the 

region of vanishing bed slope before the hydraulic jump occurs, the signals become distinct.  All 

other factors being equal, an increased upstream bed slope leads to increased penetration of the 

supercritical flow into the zone of vanishing bed slope before the hydraulic jump occurs. 

Table 2a documents the average Shields stress τ* in the supercritical region upstream of 

the jump, the average Shields stress τ* in the subcritical region downstream of the jump, and the 
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difference ∆τ* between the two.  Evidently higher initial upstream slope Si drives a higher value 

of ∆τ*, and thus a stronger pair of depositional signals. 

Figure 8e shows the pattern of entrainment of ambient water by the turbidity currents.  In 

all cases simulated therein a development zone is apparent for about the first meter.  Downstream 

of this zone, ew is seen to be relatively large in the zone of supercritical flow, increasing in Si.  In 

the zone of subcritical flow farther downstream ew drops to a very small value; the results from all 

numerical experiments eventually collapse onto the same curve. 

4.2.3.  Effect of the coefficient of  bed resistance 

Here the conditions of Run DAPER4 of GGGP (Table 1) are simulated for a range of bed friction 

coefficients, that is 0.01 ≤ cD ≤ 0.05.  Note that the lower limit of 0.01 was used above for the 

simulation of experiments reported in GGGP.  The temperature is taken to be 260, and the total 

run time is 40 min.  The initial upstream bed slope Si is that of Garcia (1989), i.e. 0.08.  The 

downstream variation in interfacial elevation ξ is given in Figure 9a; the corresponding 

downstream variations in Shields stress and deposit mass per unit area are given in Figures 9b and 

9c, respectively. 

For cD = 0.01 a hydraulic jump forms close to the canyon-fan break (Figure 9a).  As the 

bed resistance increases, the turbidity current decelerates more rapidly due to the higher bed shear 

stress.  As a result the internal hydraulic jump forms progressively farther upstream (Figures 9a, 

b).  The two depositional signals of the slope break and the hydraulic jump merge into a single 

signal for each case, as shown in Figure 9c.  While the depositional signal is clear seen for all 

three values of cD, it is largest for the largest value of cD.  This is because an increased value of cD 

acts to increase the Shields stress difference ∆τ* across the jump (Table 2).  This increase does 

not directly affect the rate of sediment deposition, but it does cause a strong decrease in the rate 

of sediment erosion from the bed.  This decrease is thus the ultimate cause of the depositional 

signal.  

4.2.4. Effect of the inflow Richardson number and concentration of suspended sediment 

The conditions of Run DAPER1 are simulated for a range of values of inflow volumetric 

concentration of suspended sediment, that is 0.0007 ≤ Co ≤ 0.014..  The lower limit of 

concentration corresponds to a very dilute underflows with an inflow Richardson number Ri0 of 

about 0.05 (Frdo = 4.47)), and the upper limit was determined so as to obtain an inflow 

Richardson number close to the unity (Frdo ≅ 1).  The actual value of Co for Run DAPER 1 was 

0.00143 (Table 2).  The initial upstream bed slope Si is that of Garcia (1989), i.e. 0.08.  The 
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results are presented in terms of profiles of bed elevation ξ in Figure 10a, flow velocity U in 

Figure 10b, Froude number Fr in Figure 10c, concentration C in Figure 10d and deposit mass per 

unit area in Figure 10e. 

The turbidity currents with lower values of Co (Rio) (and thus lower ratios of upstream 

gravitational force to inertial force) are slower and thicker in both their super- and subcritical 

regions (Figure 10a,b).  A low value of Rio corresponds to a relatively high upstream inertial 

force, and as a result there is a tendency for the hydraulic jump to move modestly downstream as 

Rio is decreased (Figures 10a,b,c).  This notwithstanding, it is seen in Figure 10c that the 

hydraulic jumps are all localized very near the slope break.  Figure 10c also shows that the 

densimetric Froude number in the supercritical region quickly adopts a quasi-equilibrium value 

Frdn (Ellison & Turner, 1959), independently of whether the current initially accelerates or 

decelerates along the model canyon.  Figure 10d indicates that the concentration C tends to 

decrease roughly exponentially in the zone upstream of the hydraulic jump, and roughly linearly 

in the zone downstream of the jump, with no discontinuity manifested either at the slope break or 

the jump. 

Figure 10e shows that the strength of the depositional signals of the slope break/hydraulic 

jump, which are essentially consonant in these simulations.  The strength of the signal clearly 

increases with increasing Co (Rio).  The case with the higest initial concentration (Co = 0.014) 

shows the highest deposition rate just downstream of the outlet as well as just downstream of the 

hydraulic jump.  This same case also shows the lowest deposition rate just upstream of the 

hydraulic jump.  Evidently just upstream of the hydraulic jump the flow had developed to the 

point that erosion was almost able to balance deposition, leaving only a very thin bed deposit 

there. 

In the above simulations, inflow Richardson number has been increased by increasing Co 

and holding other parameters constant.  It can be also increased by increasing the current inflow 

depth or decreasing the inflow depth-averaged velocity, cases which are not analyzed here. 

4.2.5. Effect of the fall velocity of the median size D of the sediment 

The dimensionless ratio vs/Uo has a major influence on the cut-off size of sediment that cause a 

turbidity current to undergo an internal hydraulic jump.  In order to study the role of this 

parameter, numerical experiments were performed with four sediment sizes, i.e. D = 9, 15, 20 

and 30 µm.  The other model input parameters are: h0 = 3 cm, U0 = 8.3 cm/s, C0 = 0.003, R = 

1.65, T = 260, Si = 0.08, run time = 40 min.  The values of 0UvS  corresponding to the above 

sediment sizes are 0.88.10-3, 2.67.10-3, 4.90.10-3 and 10.12.10-3, respectively.   Results are 
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presented in terms of the interfacial elevation ξ in Figure 11a, the densimetric Froude number Frd 

in Figure 11b and the mass sediment deposit per unit bed area in Figure 11c. 

Figures 11a and 11b illustrate that the strength of the jump declines and its position is  

gradually pushed downstream of the slope break as D (and thus vs) is increased.  In the case of 30 

µm material, the jump is extremely weak and barely occurs within the computational domain.  

The depositional signal is weak in all cases of Figure 11c, but is nevertheless most evident therein 

for the finest size studied.  In aggregate the figures confirm the conclusions reached in regard to 

Figures 4 – 7; turbidity currents carrying sufficiently coarse material deposit sediment so rapidly 

that they undergo only very weak jumps if at all in response to abrupt slope breaks. 

Figure 11a suggests a dimensionless criterion for the formation of a clear hydraulic jump 

at a slope break.  In light of the fact that the cases with values of vs/Uo ≤ 2.67.10-3 exhibited clear 

hydraulic jumps and the cases with value of vs/Uo ≥ 4.90.10-3 did not, an appropriate approximate 

threshold for a clear hydraulic jump appears to be a value of vs/Uo near 3.10-3. 

4.2.6. Effect of the multiplicative constant r0 

The constant ro is equal to the ratio of near-bottom sediment concentration to layer-averaged 

sediment concentration C.  In principle this parameter is a dependent variable, but in the simple 

layer-averaged analysis pursued here it is treated as a prescribed constant.  This notwithstanding, 

it is expected that ro ≥ 1, and that ro → 1 as u∗/vs → ∞.  In so far as the experiments of GGGP 

could be modeled well with values of ro of 1 (4, 9 and 30 µm material) and 2 (65 µm material), 

the effect of varying ro from 1 to 2 is studied here.  The other model input parameters are: h0 = 3 

cm, U0 = 8.3 cm/s, C0 = 0.003, D = 15 µm, R = 1.65, T = 260, Si = 0.08 and run time = 30 min.  

Figures 12a,b,c show profiles for ξ, Frd and deposit mass per unit area, respectively. 

 The figures illustrate the following effect of increasing ro from 1 to 2: the hydraulic jump 

is pushed farther downstream of the slope break (Figures 12a,b); the net deposition rate of 

sediment increases and the depositional signature, already weak for the case ro = 1, becomes 

indiscernible. 

4.2.7. Effect of the sediment entrainment rate eS 

It was noted earlier that even if the flow is net depositional, erosion must be accounted for if any 

depositional signal of a slope break and its associated hydraulic jump is to appear.  This 

conclusion is demonstrated more precisely in Figure 13.  The figure shows the results of three 

paired simulations associated with 4 µm, 9 µm and 15 µm material.  In one simulation of each 

pair the sediment entrainment rate es has been computed in accordance with (10), and in the other 
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the sediment entrainment rate has been set equal to zero, rendering the flows purely depositional.  

The other parameters of the simulations are h0 = 3 cm, U0 = 8.3 cm/s, C0 = 0.009, R = 1.65, T = 

260, Si = 0.08, run time = 30 min. 

 It is seen from Figure 13 that no depositional signal of the slope break/jump appears if 

erosion is neglected.  In the case of the simulations with the 9 µm and 15 µm material, the flow is 

net depositional everywhere even when sediment erosion is included.  The deposition rate is 

hardly altered by the inclusion of sediment entrainment in the zone of subcritical flow 

downstream of the jump, but is suppressed upstream of it.  This suppression allows the 

manifestation of the depositional signal. 

 In the case of the 4 µm material, the flow becomes net erosional in most of the reach 

upstream of the slope break.  This result is consistent with possibility that such flows can under 

the right circumstances excavate submarine canyons.  As in the other two cases, the flow is net 

depositional downstream of the slope break, and the deposition rate is hardly altered by the 

inclusion of sediment erosion. 

4.2.8. Effect of the downstream boundary condition 

The simulations reported above are based on the experimental configuration of Garcia (1989), in 

which there is an invert located at x = 11.6 m where the turbidity current flows into a damping 

tank.  The presence of this invert results a quasi-steady turbidity current that attains a densimetric 

Froude number of unity at the invert.  This condition has been used as the downstream boundary 

condition for the quasi-steady simulations reported above. 

 It is useful to make a comparison between flows satisfying the above boundary condition 

and flows that are otherwise identical but allowed to propagate freely until they die out.  Such a 

comparison is given in Figure 14 using 4 µm, 9 µm and 15 µm material.  The other parameters 

are: h0 = 3 cm, U0 = 8.3 cm/s, C0 = 0.0086, R=1.65, T = 260, Si = 0.08, run time = 40 min.  

 The general tendency is as follows; a) the free overfall suppresses the thickness of the 

turbidity current downstream of the hydraulic jump and b) the location of the jump is shifted 

upstream in the absence of a free overfall.  The differences are least for the coarsest sediment. 

 It can be seen in Figure 14 that the calculation for the 4 µm material has been terminated 

before the current has reached the end of the plotted zone extending from x = 0 to x = 15 m.  This 

is because the relation between the near-bed suspended sediment concentration and layer-

averaged suspended sediment concentration breaks down beyond x = 11.89 m.  This result 

highlights the desirability of extending the model to allow for values of ro that change with 

changing flow conditions. 
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4.2.9.  A hydraulic jump mediated by a gradual rather than abrupt slope break 

All calculations reported above pertain to the case for which the initial bed slope Si is a positive, 

constant value upstream of the point x = 5 m, and is vanishing downstream of that point.  In the 

field, however, the transition from canyon to fan is accompanied by a gradual rather than abrupt 

decrease in bed slope (e.g. Figure 1).  It is therefore of value to report on a calculation at the same 

experimental scale as those reported above, but with a gradually decreasing initial bed slope. 

 The calculation was performed with the conditions of run DAPER4 (Table 1), but with a 

modified initial profile.  The modified initial bed profile consisted of an upstream zone with a 

constant slope of 0.0806 and a downstream zone with a constant slope of 0.0020, connected by an 

intermediate parabolic zone where slope changed smoothly between the two.  The values of ro 

and cD used in the simulation were 1 and 0.01, respectively.  Figure 15a shows the computed 

profiles for initial bed elevation, final elevation ξ of the interface and densimetric Froude number 

Frd.  Figure 15b shows the computed profiles for the Shields stress τ* and the mass per unit bed 

volume of bed deposit. 

 It is seen from Figure 15 that a) the decreasing bed slope results in a hydraulic jump, and 

b) the hydraulic jump has an easily discernible depositional signal.  It follows that an abrupt slope 

break is necessary neither for a hydraulic jump nor for a concomitant depositional signal.  As a 

result, the use of an abrupt slope break for most of the calculations herein should be viewed as a 

convenience rather than a necessity for the creation of a hydraulic jump and its depositional 

signal. 

5.  Numerical simulations at field scale 

5.1  Simulations with the “three-equation” formulation 

The results in Section 4.2.5 suggest that the parameter vs/Uo should be less than a value of about 

3.10-3 in order for a clear hydraulic jump to form near a slope break.  At the scale of the 

experiments of Garcia (1989), this translates into an upper bound on grain size of about 15 µm.  

Under appropriate circumstances, field-scale turbidity currents can be expected to attain velocities 

that are one to two orders of magnitude higher than those observed in the experiments of Garcia 

(1989).  As a result, it can be expected that clear hydraulic jumps, as well as associated 

depositional signals would be manifested at a slope break by turbidity currents carrying material 

that is significantly coarser than 15 µm. 

 The same numerical model that has been applied above at the scale of the experiments of 

GGGP is equally applicable at field scale.  Here such an application is carried out using the 
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numbers that are loosely based on inferences from the Amazon Submarine Canyon (Pirmez, 

1994; Pirmez & Imran, 2003).  The length of the 1D “canyon” is 2.5 km; it has a slope Si of 0.01.  

The length of the 1D “fan” is 2 km; it has a vanishing slope.  The sediment size was chosen to be 

100 µm, i.e. fine sand, to depict the upper limit on the formation of internal hydraulic jumps at 

field scale.  Other parameters are: h0 = 20 m, U0 = 3.5 m/s, C0 = 0.01, R =1.65, Rio = 0.264, T = 

20°, cD = 0.05, ro = 2, λ = 0.5, run time = 20 days.  The flow was allowed to propagate freely out 

of the downstream end of the computational domain.  A relatively high value of bed friction 

coefficient cD was selected because with all other parameters unchanged smaller value of cD led to 

profiles that were increasingly net erosional.    

 It should be noted that 20 days of continuous flow may be rather unlikely in nature.  This 

20 days should thus be interpreted as the sum of many sustained events, each lasting hours or 

perhaps a few days. 

 The model was changed in two ways in order to allow it to better correspond to field 

conditions.  Firstly, the sediment entrainment formulation of Garcia & Parker (1991, 1993; Eqs. 

10a-c) was replaced with that of Wright & Parker (in press; Eqs. 11a-c).  Secondly, the parameter 

p in Eq. (11a), which controls the erodibility of the bed, was set to values less than unity, in order 

to characterize the likely field condition that the bed sediment has had a chance to develop some 

strength against erosion between turbidity current events.  In particular, trial simulations 

performed with p = 1 (freely erodible substrate) typically led to a regime that was sufficiently 

erosive that the slope break in the initial condition was quickly obliterated.  This result was 

obtained for the case p = 1 using both the “three-equation” and “four-equation” formulations.  

The lower value of p used in the simulation reported below insures that a net depositional (but not 

completely deposition) regime is attained before the slope break. 

 The results of the simulations are shown in Figures 16a-d.  Figure 16a shows the deposit 

thickness attained after 20 days for the cases p = 0.007, 0.01, 0.03 and 0.06.  For the case p = 

0.007, a backward-facing elevation step with a height of 5.07 m extends over a length of 90 m, 

starting from a point 250 m downstream of the slope break.  For the case p = 0.01 a step with a 

height of 9.28 m extends over a length of 180 m, again starting from a point 250 m downstream 

of the slope break.  For the case p = 0.03 the step has a height of 21.95 m and extends over a 

length of 370 m starting 300 m upstream of the slope break.  The step for the case p = 0.03 is 

illustrated more clearly in an inset in Figure 16a.  These numbers indicate that the slope break 

induces a depositional signature.  That this signature is also associated with a hydraulic jump is 

demonstrated below. 
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 The case p = 0.06 is of some interest.  In this case, by the end of the run the bed has 

undergone net erosion over a reach with a length of 530 meters, the downstream end of which is 

1630 m upstream of the slope break.  So much bed erosion so close to the slope break results in a 

bed profile near the break that increases so gently downstream that it is too diffuse to be 

identified as a clear step, or depositional signature.  Increasing the value of p causes the erosional 

zone to become deeper and extend farther downstream. 

 Figures 16b, 16c and 16d are restricted to the cases p = 0.01 and p = 0.03.  Figure 16b 

shows the bed and interface profiles at the end of the run; Figure 16c shows the profiles for 

densimetric Froude number and Shields stress, and Figure 16d shows the profiles for velocity and 

concentration.  The plots clearly show the hydraulic jump and the resultant step deceleration of 

the flow.  The slope break, hydraulic jump and backward-facing bed step are all seen to be 

positioned very close to each other.  The continuity of sediment concentration across the jump is 

verified in Figure 16d. 

 Similar simulations at field scale using 20 µm sediment yield much more pronounced 

depositional signal, as outlined in Kostic & Parker (2004).  The results are consistent with the 

findings of Section 4.2.5 according to which a hydraulic jump and its associated depositional 

signal become weaker as they approach to the threshold on the formation of internal hydraulic 

jumps. 

5.2  Simulations with the “four equation” formulation: cyclic steps 

Trial field-scale simulations were performed with the “four equation” model of turbidity current 

dynamics.  These were run at conditions analogous to those of the previous section, and they led 

to very similar results: a hydraulic jump and a backward-facing step in response to the slope 

break.  Runs yielding these results are not discussed further here.  In some cases, however, the 

results were sufficiently different to warrant the discussion below. 

An interesting feature appeared in the “high-p value” simulations with the “four 

equation” model that did not appear in any of the simulations with the “three equation” model; 

multiple upstream-migrating steps punctuated by hydraulic jumps, or “cyclic steps” (Parker & 

Izumi, 2000; Taki & Parker, in press, Sun & Parker, in press).  An example is presented here for 

the case p = 0.03.  All other parameters are the same as those of the previous section, i.e. h0 = 20 

m, U0 = 3.5 m/s, C0 = 0.01, R=1.65, T = 20°, ro = 2, λ = 0.5, run time = 20 days.  Additional 

parameters required in the “four-equation” formulation are: ∗
Dc  = 0.005, α = 0.1.  Figure 17 

shows plots of bed and interface elevation at t = 96 hours, 192 hours, 288 hours and 480 hours 
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(20 days).  The bed is net depositional, but the break in slope appears to trigger an instability that 

creates multiple, backward-facing bed steps bounded by hydraulic jumps that migrate upstream. 

These trains of steps have been observed and explained in the subaerial setting (i.e. in 

rivers and related open channel flows with erodible beds).  For example, Wohl & Grodek (1994) 

and Duckson & Duckson (1995) have observed rhythmic steps in the beds of bedrock streams.  It 

is rarely possible to observe the process of incision into bedrock directly in the field.  Parker & 

Izumi (2000), however, developed a theory to describe the formation of such steps in a purely 

erosional (incisional) setting.  They have termed these features “cyclic steps.”  The theory 

predicts that the steps should migrate upstream and be bounded by hydraulic jumps.  The only 

qualitative difference between bedrock steps and those shown in Figure 17 is that the in the 

former case the bed degrades on average due to incision, whereas in the latter case the bed is net 

aggradational.  Brooks (2001) has modeled purely erosional cyclic steps in a model bedrock in 

the laboratory. 

Winterwerp et al. (1992) have observed similar cyclic steps bounded by hydraulic jumps 

in alluvium in the field.  The setting was that of sheet open channel flow over a sandy bed.  Taki 

& Parker (in press) have called these “transportational” cyclic steps, in which bed erosion and 

deposition occur simultaneously.  Taki & Parker (in press) and Sun & Parker (in press) have 

studied experimentally and modeled numerically transportational cyclic steps.  One possible state 

is an equilibrium whereby deposition dominates on the upstream side of each step and erosion 

dominates on downstream side, but the train marches upstream without net bed aggradation or 

degradation.  Similar cyclic steps bounded by hydraulic jumps can also form, however, under 

conditions of net bed degradation (deposition dominates erosion) or aggradation (erosion 

dominates deposition).  This latter case provides a subaerial analog of Figure 17. 

Parker & Izumi (2000) Sun & Parker (in press) have shown that cyclic steps are cousins 

of antidunes.  In particular, under the right conditions antidunes devolve into a train of upstream-

migrating steps punctuated by hydraulic jumps.  Such steps are invariably long waves in that the 

depth (subaerial) or flow thickness (subaqueous) is small compared to step length. 

The possibility of cyclic steps in the subaqueous setting has been investigated much less.  

Fedele & Garcia (2001) have used the “four equation” model to perform an approximate stability 

analysis of an erodible, sandy bed over which flows a muddy turbidity current.  The analysis 

revealed an antidune instability.  Lee et al. (2002) discuss a variety of mechanisms for the 

formation of submarine sediment waves, including antidunes.  Included in their treatment is a 

numerical model of flow over a wavy bed using the turbidity current formulation of Skene et al. 
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(1997); the model again yields upstream-migrating antidunes.  The results of Figure 17, however, 

provide the first hint that many upstream-migrating submarine bedforms, including those 

commonly found on the back side of levees bounding submarine channels, may actually be 

subaqueous versions of cyclic steps. 

6.  Conclusions 

The analysis presented here helps define the limits on the formation of internal hydraulic jumps in 

turbidity currents near a canyon-fan transition.  It also provides clear evidence that a hydraulic 

jump associated with slope decline in the downstream direction can indeed affect the resulting 

sediment deposit by leaving a depositional signature.  When the signature occurs, it can take the 

form of one, or in some cases two backward-facing steps.  The case of two steps occurs when the 

jump forms well downstream of the slope change that generates it.  In such a case the gradual 

deceleration of the flow between the step and the jump creates a relatively gentle step, and the 

sudden deceleration across the jump creates a sharp step.  When the jump occurs near the point at 

which slope changes, the two steps merge into one. 

 The analysis underlines the physical basis for the depositional signature of the jump.  

Suspended sediment concentration is continuous through a hydraulic jump, and the deposition 

rate of sediment is proportional to this concentration.  As a result, a purely depositional 

formulation of the problem fails to capture any depositional signature of the jump.  When 

sediment entrainment is included, however, a step decrease in entrainment rate is realized across 

the jump due to the step decrease in flow velocity and shear stress.  The net depositional rate 

(deposition rate – entrainment rate) thus undergoes a step increase across the jump.  In this way, a 

depositional signature in the form of a backward-facing step is realized even when erosion 

nowhere dominates deposition. 

The numerical model used to obtain the results reported above employs the explicit 

finite-volume upwind ULTIMATE QUICKEST algorithm.  The bed is allowed to evolve as a 

result of simultaneous erosion and deposition of suspended sediment.  The experimental data on 

the downstream variation in sediment mass deposited per unit bed area (Garcia, 1993) were used 

to calibrate and verify the model.  The model is applied to the various scenarios of turbidity 

currents developing along a sloping bed, designed to be representative of experiments by GGGP.  

The results of the model simulations using the “three equation” formulation for turbidity current 

dynamics lead to the following observations and conclusions: 

• Turbidity currents driven by sediment fine enough to satisfy the condition 
3

0 1067.2 −⋅<UvS  regularly display an internal hydraulic jump induced by the break in 
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slope.  The coarser-grained currents, for which the ratio 3
0 109.4 −⋅>UvS , do not 

undergo a transition to subcritical flow due to the rapid rate of sediment deposition on the 

bed.  They either thicken after the break in slope or, if very coarse-grained, disintegrate 

rapidly before even reaching the model fan; in both cases the densimetric Froude number 

increases rather than decreases downstream of the slope break.  Turbidity currents with 

ratios 3
0

3 109.41067.2 −− ⋅≤≤⋅ UvS  can go either way, depending on other 

dimensionless parameters.  For example, higher inflow concentration C0, higher bed 

resistance cD, or milder initial canyon slope Si generally push the cutoff ratio toward and 

even somewhat beyond the upper limit. 

• When a hydraulic jump occurs in response to a slope break, it need not occur precisely at 

the slope break.  Depending on the flow conditions the jump may form upstream of the 

slope break, be coincident with it or occur downstream of the slope break.  In the last 

case a gradual reduction in shear stress is manifested downstream of the slope break up to 

the hydraulic jump, where a sharper break occurs.  In the numerical experiments at 

laboratory scale reported here, a progressively steeper upstream reach/model canyon (e.g. 

Si > 0.12) pushes the internal hydraulic jump increasingly farther downstream of the 

slope break. 

• Both the gradual reduction in bed shear stress between the slope break and the jump and 

the sharper reduction at the jump can leave depositional signals in the form of backward-

facing steps.  The two steps merge into a single step when the slope break and the jump 

are coincident. 

• In the original work of Garcia (1989), it is reported that the break in slope and associated 

hydraulic jump did not leave a discernible signature.  A reanalysis of the same data 

reveals at least one case with a weak signature.  This signature is not reproduced by the 

numerical model of Choi & Garcia (1995) because it is purely depositional.  It is captured 

reasonably well by the present model, which incorporates entrainment of bed sediment 

into the analysis.  The analysis provides the following crude criterion for a depositional 

signature of the jump: ( ) 3.02
* >∆ fS Rvu .  The precise criterion depends on other 

dimensionless parameters as well. 

• The slope break need not be sharp in order to generate a hydraulic jump and a 

depositional signature. 

When the analysis is extended to the “four equation” model of turbidity current 

dynamics, under conditions of increasing sediment entrainment the slope break can trigger an 
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instability which generates a series of upstream-migrating cyclic steps bounded by hydraulic 

jumps.  These steps constitute a newly-recognized phenomenon that deserves further 

investigation. 
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Notation 

α   constant in the sediment entrainment relation 

21 ,αα   parameters in the sediment entrainment relation  

2β   shape constant accounting for a nonuniform density over current depth 

cD   bed friction coefficient 

cf   total friction factor 

co , c , ±c   characteristic velocities of the turbid flow 

C   turbidity current depth-averaged volumetric concentration 

Ĉ    dimensionless depth-averaged volumetric concentration 

tĈ    target concentration 

D   median diameters of sediment 

ew   water entrainment coefficient 

Frd   densimetric Froude number  

Frdn   normal densimetric Froude number 

Frdp   densimetric Froude number just upstream of the plunge point 

Frdd   densimetric Froude number just downstream of the plunge point 

f,  f1, g1  functions 

g   acceleration of gravity 

h   turbidity current thickness 

ĥ    dimensionless turbidity current thickness 

h0 ,U0 , C0   values of h, U and C at the inflow boundary  

L̂    dimensionless target length 
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q̂  , φ̂  dimensionless conservative variables defined such that hUq ˆˆˆ =  and hC ˆˆˆ =φ   

R    submerged specific gravity of sediment 

Ri   bulk Richardson number 

Ri0   Richardson number at the inflow boundary 

Rf   dimensionless particle fall velocity 

Rep   particle Reynolds number 

ro   multiplicative constant 

s   position of the front of the turbidity current 

ŝ   dimensionless position of the front  

s&    velocity of the current head 

ŝ&   dimensionless s&   

S    bed slope 

Si    initial slope of the canyon bed 

t   time 

T  temperature of the underflow 

hχ    scale ratio for length 

Cχ    scale ratio for concentration 

*u    shear velocity 

*u∆    average drop in shear velocity due to internal hydraulic jump 

U   turbidity current depth-averaged velocity 

Û    dimensionless depth-averaged velocity 

vS   fall velocity of sediment 

x    bottom-attached streamwise coordinate on lake bed 
*x   bottom-attached dimensionless streamwise coordinate  

∆   volume deposition rate of sediment per unit bed area per unit time   

η    elevation of the bed 

η̂    dimensionless bed elevation  

λ     porosity of deposit 

ν    kinematic viscosity of the water 

τ    dimensionless time 
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*
Sτ    bed Shields stress 

*τ∆   average drop in bed Shields stress associated with the hydraulic jump 

Z   similarity variable 
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FIGURE CAPTIONS 

Figure 1 Plot of the long profile of the thalweg of the dominant channel of the Amazon 

Canyon-Fan System.  The origin of the horizontal coordinate system is the 

approximate position of the break between the continental shelf and slope.  Also 

shown on the plot are a) an elevation profile of the approximate top of canyon to 

the canyon-fan transition, and b) an elevation profile of the approximate top of 

the levee(s) bounding the channel on the fan.  The plot derives from Pirmez 

(1994) and Pirmez and Imran (2003); the data were provided by C. Pirmez. 

Figure 2 Diagram showing the configuration of the flume for the experiments of  

  Garcia (1989). 

Figure 3 Numerical simulation of Exp. NOVA1 of Garcia (1989) using 4 µm sediment. 

a) Development of the interface between the turbid flow and the clear water 

above, showing the evolution of a hydraulic jump; and 

b) spatial variation of the densimetric Froude number at various times, again 

showing the evolution of a hydraulic jump. 

Figure 4 Verification of the model against the experimental data of Exp. NOVA2 of 

Garcia (1989) using 4 µm sediment; also included are the results of a numerical 

model by Choi & Garcia (1995). 

a) Spatial variation of the elevation ξ of the interface between the turbid flow and 

the clear water above with distance from the inlet; and  
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b) Spatial variation of the depth-averaged velocity U and concentration C with 

distance from the inlet.  

Figure 5 Predictions of the model for turbidity currents driven by 9 µm sediment (Exps. 

DAPER4 and DAPER7). 

a) Depositional pattern predicted by the model; also included are the 

experimental observations of Garcia (1989); 

b) Numerical simulation of the elevation ξ of the underflow interface; and  

c) Numerical simulation of the densimetric Froude number Frd. 
Figure 6 Predictions of the model for turbidity currents driven by 30 µm sediment 

(GLASSA1, GLASSA2, GLASSA3). 

a) Depositional pattern predicted by the model; also included are the 

experimental observations of Garcia (1989); 

b) Numerical simulation of the elevation ξ underflow interface; and 

c) Numerical simulation of the densimetric Froude number Frd. 

Figure 7 Predictions of the model for turbidity currents driven by 65µm sediment 

(GLASSB1, GLASSB2, GLASSB3). 

a) Depositional pattern predicted by the model; also included are the 

experimental observations of Garcia (1989); 

b) Numerical simulation of the elevation ξ of the underflow interface; and 

c) Numerical simulation of the densimetric Froude number Frd. 

Figure 8 Effect of the initial upstream slope of the submarine canyon on the turbidity 

current and deposit. 

a) Variation of the elevation ξ of the underflow interface with distance from 

the inlet; 

b) Variation of the densimetric Froude number Frd with distance from the inlet; 

c) Variation in bed Shield stress τ* with distance from the inlet; 

d) Depositional patterns produced by the flows; and 

e) Variation in water entrainment coefficient along the model canyon-fan. 

Figure 9 Effect of the bed resistance on the turbidity current and deposit. 

a) Variation of the elevation ξ of the underflow interface with distance from 

the inlet; 
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b) Variation of the bed Shields stress τ* with distance from the inlet. along the 

model canyon-fan; and 

c) Depositional patterns produced by the flows. 

Figure 10 Effect of the inflow concentration (inflow Richardson number) on the turbidity 

current and deposit. 

a) Variation of the elevation ξ of the underflow interface with distance from 

the inlet; 

b) Variation of depth-averaged velocity U with distance from the inlet; 

c) Variation of the densimetric Froude number Frd with distance from the inlet; 

d) Variation of the volume sediment concentration C with distance from the 

inlet; and 

e) Depositional patterns produced by the flows. 

Figure 11 Effect of characteristic sediment size (fall velocity) on the turbidity current and 

deposit. 

a) Variation of the elevation ξ of the underflow interface with distance from 

the inlet; 

b) Variation of densimetric Froude number Frd with distance from the inlet; 

and 

c) Depositional patterns produced by the flows. 

Figure 12 Effect of the multiplicative constant r0 on the turbidity current and deposit. 

a) Variation of the elevation ξ of the underflow interface with distance from the 

inlet; 

b) Variation of densimetric Froude number Frd with distance from the inlet; 

and 

c) Depositional patterns produced by the flows. 

Figure 13 Comparisons of simulated depositional patterns produced by including and 

neglecting sediment entrainment in the calculation. 

Figure 14 Comparisons of the elevation ξ of the underflow interface predicted with a free 

overfall at x = 11.6 m and free runout of the current with no overfall. 

Figure 15. Results for a simulation with an initial bed slope that declines smoothly in the 

downstream direction. 
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a) Downstream variation of initial bed elevation, elevation ξ of the underflow 

interface and densimetric Froude number Frd; and 

b) Downstream variation of Shields stress τ* and deposit mass per unit bed area. 

Figure 16 Results of field-scale simulations for a turbidity current carrying 100 µm 

sediment using the “three equation model” after 20 days of continuous flow. 

a) Downstream variation in deposit thickness for the cases p = 0.007, 0.01, 0.03 

and 0.06; 

b) Downstream variation in bed elevation η and interface elevation ξ for the 

cases p = 0.01 and 0.03; 

c) Downstream variation in densimetric Froude number Frd and Shields stress 

τ* for the cases p = 0.01 and 0.03; and 

d) Downstream profiles for layer-averaged flow velocity U and suspended 

sediment concentratin C for the cases p = 0.01 and 0.03. 

Figure 17 Simulated downstream profiles of bed elevation η and interface elevation ξ at 

four times during 20 days of continuous flow of a turbidity current carrying 100 

µm sand, using the “four equation” model.  In the simulation p = 0.03.  The 

figure documents the formation of upstream-migrating cyclic steps bounded by 

hydraulic jumps. 

 
 



 

 

 
 
Table 1. Input parameters for the numerical model (from experiments by Garcia, 1993) 

 
 
Table 2. Effect of the bed resistance to the average Shield stress 
cD Avg. τ*  

supercritical region 
Avg. τ* 

subcritical region 
∆ τ* 

 
0.01 0.45 0.09 0.36 
0.02 0.72 0.14 0.58 
0.05 1.20 0.27 0.93 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Run  H 
 

(cm) 

U 
 

(cm/s) 

C  
X 103 

R Rio D 
 

(µm) 

vs 
 

(cm/s) 

T 
 

(oC) 

Run  
time 
(min) 

NOVA1 3 8.3 1.30 1.65 .09163 4 .00115 25.5 40 
NOVA2 3 8.3 2.48 1.65 .17481 4 .00114 25 40 
DAPER1 3 8.3 1.43 1.65 .10080 9 .00731 26 40 
DAPER4 3 8.3 2.95 1.65 .20494 9 .00741 26.5 33 
DAPER7 3 8.3 8.6 1.65 .60620 9 .00677 23 30 
GLASSA2 3 8.3 3.39 1.50 .21723 30 .08402 26 30 
GLASSA5 3 8.3 3.94 1.50 .25248 30 .08402 26 30 
GLASSA7 3 11.0 2.66 1.50 .09705 30 .08402 26 30 
GLASSB1 3 11.0 3.00 1.50 .10945 65 .35418 25 38 
GLASSB2 3 11.0 6.00 1.50 .21890 65 .34423 23.5 27 
GLASSB3 3 11.0 1.50 1.50 .05473 65 .34104 23 28 
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Figure 3a, b 
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Figure 5a, b, c 
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Figure 6a, b, c 
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Figure 7a, b, c 
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Figure 8a, b, c 
 



 

 

0

0.2

0.4

0.6

0 2 4 6 8 10 12
Distance from Inlet (m)

Se
di

m
en

t D
ep

os
it 

(g
/c

m
2 ) S0 = 0

S0 = 0.04
S0 = 0.08
S0 = 0.12
S0 = 0.26

 
 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12
Distance from Inlet (m)

W
at

er
 E

nt
ra

in
m

en
t C

oe
ffi

ci
en

t  
(x

 1
03 )

S0 = 0
S0 = 0.04
S0 = 0.08
S0 = 0.12
S0 = 0.26

 
Figure 8d,e 
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Figure 9a, b, c 
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Figure 10a, b, c 
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Figure 11a, b, c 
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Figure 12a, b, c 
 



 

 

-0.2

0.3

0.8

1.3

1.8

0 2 4 6 8 10 12
Distance from Inlet (m)

Se
di

m
en

t D
ep

os
it 

(g
/c

m
2 ) 4 microns, no erosion

4 microns, with erosion
9 microns, no erosion
9 microns, with erosion
15 microns, no erosion
15 microns, with erosion

 
Figure 13 
 

0

0.2

0.4

0.6

0 3 6 9 12 15
Distance from Inlet (m)

W
at

er
 In

te
rf

ac
e 

(m
)

4 microns, with overfall
4 microns, no overfall
9 microns, no overfall
9 microns, with overfall
15 microns, with overfall
15 microns, no overfall

 
Figure 14 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

0

0.2

0.4

0.6

0 2 4 6 8 10 12

Distance from Inlet (m)

W
at

er
 In

te
rf

ac
e,

 B
ed

 (m
)

0

1

2

3

D
en

si
m

et
ric

 F
ro

ud
e 

N
um

be
rFinal W.S.E.

Initial parabolic bed
Frd

 

0

0.1

0.2

0.3

0 2 4
Distance

Se
di

m
en

t D
ep

os
it 

(g
/c

m
2 )

0.4

0.5

Figure 15a, b 
 
 
 
 
 
 
 
 
 
 
 
 

τ*
6 8 10 12
 from Inlet (m)

0

0.1

0.2

0.3

B
ed

 S
he

ld
 S

tr
es

s
 

 



 

 

-100

0

100

200

300

400

500

0 1 2 3 4 5 6

Distance from Inlet (km)

Se
di

m
en

t D
ep

os
it 

(m
)

p = 0.007
p = 0.01
p = 0.03
p = 0.06

`

200

400

600

800

0 1 2 3 4 5 6
Distance from Inlet (km)

W
at

er
 In

te
rf

ac
e,

 B
ed

 (m
) Initial bed

Interface,  p = 0.01
Final bed, p = 0.01
Interface,  p = 0.03
Final bed, p = 0.03

 

0

1

2

3

4

0 1 2 3 4 5 6

Distance from Inlet (km)

D
en

si
m

et
ric

 F
ro

ud
e 

N
um

be
r

0

300

600

900

B
ed

 S
he

ld
 S

tr
es

s

Frd, p = 0.01
Frd, p = 0.03
      , p = 0.01
      , p = 0.03
τ∗   

τ∗   
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