Sapping Channels of Permanent Form

March 5, 2002

Be careful!!  Liable to have typos and real errors!!

MOTIVATION

Channels with rounded heads that migrate upstream due to sapping seem to be of interest here at MIT (Rothman’s class, Whipple’s class).  Some of these channels look as though, to a first approximation, they extend themselves upstream while preserving shape.  Thus is suggested the possibility of a sapping channel of permanent form, i.e. one that migrates upstream without ever changing shape.  Such a form will not occur in nature.  Under the right conditions, however, nature might get pretty close to it.

THE IDEA
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Consider the illustration of Figure 1.  Groundwater flow is from bottom to top.  The sapping channel is the bold indentation.  It attracts groundwater to it.  The groundwater removes erodible material in a permeable layer, eventually causing the less permeable layer from above to collapse.  The rubble is periodically cleaned out by the no-longer metaphorical gully washer.  As a result, the boundary of the sapping channel retreats upstream.

DEFINITIONS

The streamwise coordinate in Figure 1 is y and the transverse coordinate is x.  The upstream boundary of the aquifer is at y = 0, where piezometric head is given.  The distance to the channel head in the streamwise direction is Lh.  The channel head has length Lc and half-width bc.  The head joins a body consisting of parallel walls at junction point J.  The streamwise distance from the junction point to the end of the channel is Ld.  The half-width of the domain is Lb.  The problem is assumed to be symmetrical in x.

From x = 0 to x = bc the shape of the upstream edge of the sapping channel is given as



[image: image1.wmf])

t

,

x

(

y

L

y

s

h

+

=









(1)

where by definition ys(bc, t) = Lc.  As noted in Figure 2, the angle ( of the edge of the sapping channel is given as
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and the unit normal vector to the channel 
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 is given as
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(3)

The aquifer itself, as well as the impermeable layer above it, is assumed to have slope S in the y direction, and no slope in the x direction, as illustrated in the slice along y = 0 of Figure 3.
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GROUNDWATER FLOW

Let ( be the elevation to the bottom of the permeable layer, and p denote the groundwater pressure in that layer. The piezometric head ( is then given as
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(4a,b)

where ( denotes the specific weight of water.  Noting that by definition
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the groundwater velocity vector (u, v) is given as
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(6)

where k denotes a permeability.  The equation governing groundwater flow is the Laplace equation,
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(7)

The boundary conditions (7) are as follows.
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(8a-f)

The groundwater velocities in the ampitheater where the flow daylights are given as (ud, vd) where
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(9)

The component of flow velocity at the point of daylighting that is normal to the boundary is given as udn, where
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RELATION FOR EVOLUTION OF THE CHANNEL BOUNDARY

It is assumed here that the channel migrates in the direction normal to its own boundary, i.e. in the direction 
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 of Figure 2.  In addition, the magnitude of this migration rate 
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 is assumed (simply enough) to be linearly proportional to the  magnitude of the excess of the normal daylighting groundwater velocity above some critical value ucr , so that,
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(11)

where ( is a dimensionless constant.

MIGRATING CHANNEL OF PERMANENT FORM

A solution of channel evolution of permanent form must have the characteristic that the problem becomes independent of time in a coordinate system migrating upstream at a constant speed c.  If the sapping channel is to migrate upstream with constant migration speed c while maintaining permanent form, it is seen from the geometry of Figure 4 that the following condition must be satisfied;
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(12)

Reducing, the above relation yields
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(13)
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One more condition must be satisfied for a channel of permanent form; the side walls from the junction point J to the end of the domain y = Lh + Lc + Ld must not erode.  This condition can be expected to be satisfied if no erosion occurs at the junction point itself.  From Figure 5, then, the necessary condition is that 
[image: image17.wmf]cr

nd

u

u

=

 at the junction point, or thus
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(14)

If we assume a smooth match of the sapping boundary at point J, the following condition must be satisfied there;



[image: image19.wmf]0

)

L

L

,

b

(

dx

dy

1

1

cos

2

c

h

c

s

J

=

ú

û

ù

ê

ë

é

+

+

=

q






(15a)

or thus
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(15b)

Between (14) and (15b) it is seen that the junction condition reduces to
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(16)

It should be noted that strictly speaking, the upstream and downstream boundaries in the domain of Figure 1 must also be migrating upstream at the same rate at the channel in order to yield a true solution of permanent form.  In practice, the solution (if there is one) is likely to be accurate over a wide range of channel positions and time intervals as an approximation even when the domain boundaries are not migrating.

ANALYTICAL VERSUS NUMERICAL SOLUTION

This section is not very well thought out.

It is possible that an approximate analytical solution to the problem is possible.  A necessary condition for this is that the streamline shown in Figure 5 should deviate only slightly from the streamwise (y) direction at the point of daylighting.  If this is the case, then the solution for hp(x, y) may deviate only slightly from a base solution hpb that would prevail in the absence of any transverse (x) effects;
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If this is the case than it may be that a perturbation solution of the following form exists;
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where ( = bb/Lh.  The junction condition may, however, render a perturbation solution difficult.

In the event that an analytical solution is not possible, it should still be possible to execute a numerical solution.  To study this we first make the problem dimensionless.

The following nondimensionalizations are employed;
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(17a-g)

In addition, the following definitions is made;
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(18)

Here it is implicitly assumed that the area of interest is one for which ( << 1 and ( ~ o(1).

Equations (7) and (8) now become
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(20a-f)

where
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(21a-c)

Here the expected range of interest is one such 
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 ~ o(1) and 
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 >> 1.  In addition, (13) becomes
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(22)

and (16) becomes
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A possible numerical scheme is as follows.  Impose values of 
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.  Assume some form for 
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.  Guess values of ( and (, and dink around with the solution of (19) and (20) until a solution for hp that satisfied (23) is obtained.  Use this solution to compute a better estimate of 
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 from (22).  Then with this new solution, dink around with ( and ( until (23) is satisfied and repeat the process.
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