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Introduction

The code contained in Module 1 of worksheet “RTe-bookAgDegBW.xls” computes variation in river bed level ((x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B.  The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R.  The reach under consideration has length L.  Water surface elevation at the downstream end is prescribed.  The model is based on a calculation of total bed material load.  The model is 1D, assumes a rectangular channel and neglects wall or bank effects.

By modifying the upstream sediment feed rate Gtf and/or the downstream water surface elevation (d, the river can be forced to aggrade or degrade to a new equilibrium.  The program computes this evolution.

Computation of the flow


The flow in the channel is computed using the backwater formulation for steady, gradually varied flow under the constraint of constant water discharge per unit width qw.  Let H denote depth, kc denote the composite roughness height, S denote bed slope and x denote a downstream coordinate.  The backwater equation is
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(1a)

where the friction slope Sf and Froude number Fr are defined as
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(1b,c)

In (1c) g denotes the acceleration of gravity, and flow velocity U is given from continuity as
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In (1b) the bed friction coefficient Cf is here assumed to obey a Manning-Strickler resistance relation;
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(3)

where g denotes the acceleration of gravity and (r is a dimensionless coefficient between 8 and 9.  If bedforms are absent roughness height kc is set equal to grain roughness ks and related to grain size D as
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where nk is a dimensionless coefficient typically between 2 and 5.  If bedforms are present kc must be estimated using a relation for hydraulic resistance that includes the effect of bedforms.

The case of Froude-subcritical flow, for which Fr < 1 is considered herein.  This implies that integration of (1a) must proceed upstream from x = L.  In (1a) the relation between bed slope S and bed elevation ( is
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Water surface elevation ( is given as
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 The upstream end of the reach in question is at x = 0 and the downstream end is at x = L.  For a specified bed elevation profile ((x) and specified water elevation (d at the downstream end of the reach, from which 
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 can be computed, (1a) is integrated upstream to determine the depth H and flow velocity U over the entire reach.  The Shields number (( is then computed as
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(7)

where (b denotes the bed shear stress, given as
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and
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in which ( denotes fluid density and (s denotes sediment density.

Computation of the sediment transport


In the code a generic sediment transport equation of the type of Meyer-Peter and Müller (1948) is used.  It takes the form
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(10a)

where (c( denotes a critical Shields number for the onset of sediment motion, (s denotes the fraction of bed shear stress that is skin friction and q( denotes the Einstein number, defined as
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(10b)

and qt is the volume sediment transport rate per unit width.  In the original formulation of Meyer-Peter and Muller (1948) the following values are used;
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(11a,b,c)

Intermittency


Actual rivers tend to be morphologically active only during floods.  That is, most of the time they are not doing much to modify their morphology.  The simplest way to take this into account is to assume an intermittency If such that the river is in flood a fraction I of the time, during which Q = Qf and qt is the sediment transport rate at this discharge (Paola et al., 1992).  For the other (1 – If) fraction of time the river is assumed not to be moving sediment.  The idealized hydrograph associated with intermittency is shown in Figure 1.
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After averaging over many floods, the relation between cumulative time the river has been in flood tf and actual time t is
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Equilibrium (graded) states


In implementing the program, the parameters (r, (t, nt, (s, (c( and R are specified on the worksheet “Auxiliary Parameters”.  The parameters Qf, B, I and D are specified in the worksheet “Calculator”.


Initially the channel has some specified slope S, also specified in “Calculator”.  The (flood) sediment transport rate qt in m2/s associated with a graded state at this slope is computed from (8), (9) and (10).  The annual sediment yield Gt in tons/year associated with a graded state at this slope is given as


Gt = 
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(13)

where ta denotes the number of seconds in a year.


The user may then specify a sediment feed rate Gtf at the upstream end that differs from Gt, forcing the bed to aggrade or degrade.  The Shields number ((, bed slope S and flow depth H ultimately obtained at the graded state associated with this feed rate can be computed by first calculating qt as



[image: image17.wmf]

 EMBED Equation.3  [image: image18.wmf]a

f

s

tf

t

t

BI

G

q

r

=










(14)

and then obtaining (( from an inversion of (10a,b), obtaining S from the condition that S = Sf at equilibrium and (1b) and H from (7).

Computation of bed variation


The Exner equation of sediment continuity takes the form
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(15)

where ( denotes bed elevation, (p denotes the porosity of the bed deposit and t denotes time.  However in the above equation it must be assumed according to Figure 1 that qt is zero for most of the time.  Averaging over many floods, then, (15) can be amended to
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(16)

where now qt refers specifically to the sediment transport rate during flood discharge Qf.
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Numerical scheme


The reach is assumed to have length L, and divided into M subreaches each with length (x, where
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This defines M+1 nodes with the positions
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(18)

as noted in Figure 2.  Denoting the initial bed slope of the river as SI, the initial bed elevations (i are given as
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(19)


The numerical implementation proceeds in two steps.  First (1a) is solved over a known bed under the constraint of a specified, constant water surface elevation (d at the downstream end, so allowing the determination of qt with the aid of (7) and (10) at every node. Then (16) is solved to find the new bed one time step later.


To solve (1a), suppose that the depth Hi+1 is known and the depth Hi at one node upstream is to be computed.  The relation discretizes with the aid of (1b,c), (3) and (5) to give
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(20a)

where
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(20b)

or rearranging,



[image: image26.wmf]x

)

H

(

F

H

H

back

1

i

i

D

-

=

+









(21)

Note that (x is always a positive quantity here.  The boundary condition on (21) is
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In the code a predictor-corrector scheme is used to solve for H;
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(23)

Once H is known at all nodes the Shields number (( can be computed at all nodes from (7).

From the known values of (i( the sediment transport rate qt,i can be computed from (10).  The new bed elevation at the next time step is then given from a discretized version of (16),
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(21)

where (t denotes the time step, which must be specified in worksheet “Calculator”, and
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(22)

In (22) au is a coefficient that can be set between 0 and 1.  The setting au = 1 yields a pure upwinding scheme, which gives stability at the cost of accuracy.  The setting au = 0.5 yields a central difference scheme, which gives accuracy at the cost of stability.  Schemes using a backwater formulation are prone to numerical instability in the absence of at least some upwinding, so that au should be greater than 0.5.  The value is specified in the worksheet “Calculator”.


The versions of (21) and (22) used at node 1 involve the ghost node given in Figure 2, where the feed rate qtf is specified.  Here the ghost node is at i = 0 located (x upstream of the upstream end of the reach, at which qt,0 = qtf.

Output Control


Output is controlled by the parameters Ntoprint and Nprint.  The code will implement Ntoprint time steps before printing output to worksheet “ResultsofCalc”.  In addition to output pertaining to the initial state, the code implements Nprint outputs, to that the total number of time steps executed is equal to Nprint x Ntoprint.  Output is given graphically in worksheet “PlottheData”.
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