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FORMULATION FOR:
RTe-bookAgDegNormal.xls
This document is a companion to the spreadsheet:

RTe-bookAgDegNormal.xls
Introduction

The code contained in Module 1 of worksheet “RTe-bookAgDegNormal.xls” computes variation in river bed level ((x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B.  The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R.  The reach under consideration has length L.  Bed elevation at the downstream end is assumed to be fixed.  The model is based on total bed material load.  The model is 1D, assumes a rectangular channel and neglects wall effects.

By modifying the sediment feed rate Gtf at the upstream end, the river can be forced to aggrade or degrade to a new equilibrium.  The program computes this evolution.

Computation of the flow

The flow in the channel is computed using a Manning-Strickler resistance relation and the normal flow approximation, i.e.
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(1)

where U denotes flow velocity, u( denotes shear velocity, H denotes flow depth, g denotes the acceleration of gravity, (r is a dimensionless coefficient between 8 and 9, and kc denotes a composite roughness height.  In the absence of bedforms roughness height kc is equal to the grain roughness height ks, which is related to grain size D as
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where nk is a dimensionless coefficient typically between 2 and 5.  When bedforms are present kc must be estimated using a formulation of hydraulic resistance that includes bedforms (e.g. dunes).
The equation for water conservation for a quasi-steady flow is
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(4)

where Q denotes the water discharge, qw denotes the water discharge per unit width and B denotes channel width.  The normal-flow formulation for boundary shear stress (b and Shields number (Shields stress) (( is
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(5a,b)

where S denotes bed slope, g denotes the acceleration of gravity and
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(6)

where ( denotes fluid density and (s denotes sediment density.


The following relations are obtained between (1) – (5);
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(7)
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(8)

where in (8) (( is the parameter used to compute sediment transport.

Computation of the sediment transport


In the code a generic transport equation of the type of Meyer-Peter and Müller (1948) is used.  It takes the form
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(9)

where (c( denotes a critical Shields number for the onset of sediment motion and qt( denote the Einstein number, defined as
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(10)

and qt is the volume sediment transport rate per unit width.  In addition, the parameter (s denotes the fraction of boundary shear stress that consists of skin friction (if such a decomposition is used in the sediment transport relation).  In the absence of bedforms (or if a decomposition is not used) (s = 1.  When bedforms are present, a formulation for hydraulic resistance including bedforms must be used to estimate (s.  In the original formulation of Meyer-Peter and Müller (1948) the following values are used;
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(11a,b,c)

Intermittency
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Actual rivers tend to be morphologically active only during floods.  That is, most of the time they are not doing much to modify their morphology.  The simplest way to take this into account is to assume an intermittency If such that the river is in flood a fraction If of the time, during which Q = Qf and qt is the sediment transport rate at this discharge (Paola et al., 1992).  For the other (1 – If) fraction of time the river is assumed not to be moving sediment.  The idealized hydrograph associated with intermittency is shown in Figure 1.

After averaging over many floods, the relation between cumulative time the river has been in flood tf and actual time t is
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Equilibrium (graded) states


In implementing the program, the parameters (r, (t, nt, nk, (c(, (s and R are specified on the worksheet “Auxiliary Parameters”.  The parameters Qf, B, If and D are specified in the worksheet “Calculator”.


Initially the channel has some specified ambient slope S, also specified in “Calculator”.  The (flood) transport rate qt in m2/s associated with a graded state at this slope is computed from (8), (9) and (10).  The annual sediment yield Gt in tons/year associated with a graded state at this slope is given as


Gt = 
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(13)

where ta denotes the number of seconds in a year.


The user may then specify a sediment feed rate Gtf at the upstream end that differs from Gt, forcing the bed to aggrade or degrade.  In the present calculation this process is hinged at the downstream end of the reach, where bed elevation is held constant.  The Shields number ((, bed slope S and flow depth H ultimately obtained at the graded state associated with this feed rate can be computed by first calculating qt as
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(14)

and then obtaining (( from an inversion of (9) with the aid of (10), obtaining S from (8) and H from (7).

Computation of bed variation


The Exner equation of sediment continuity takes the form
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(15)

where ( denotes bed elevation, (p denotes the porosity of the bed deposit and t denotes time.  However in the above equation it must be assumed according to Figure 1 that qt is zero for most of the time.  Averaging over many floods, then, (15) can be amended to
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(16)

where now qt refers specifically to the sediment transport rate during flood discharge Qf.
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Numerical scheme


The reach is assumed to have length L, and divided into M subreaches each with length (x, where
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(17)

This defines M+1 nodes with the positions
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(18)

as noted in Figure 2.  The bed elevation at x = L, i.e (M+1 is always assumed to be zero here.  This implies a fixed condition at the downstream end such as a bedrock outcrop.  If S denotes (for the moment) the initial bed slope, then the initial bed elevations (i are given as
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(19)

At any given time in the calculation of the variation of channel bed elevation, the bed slope at the ith node is given as follows;
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(20)

Once Si is known, qt,i can be computed from (8), (9) and (10).  The new bed elevation at the next time step is then given from a discretized version of (16),
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(21)

where (t denotes the time step, which must be specified in worksheet “Calculator”, and
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(22)

In (22) au is a coefficient that can be set between 0 and 1.  The setting au = 1 yields a pure upwinding scheme, which gives stability at the cost of accuracy.  The setting au = 0.5 yields a central difference scheme, which gives accuracy at the cost of stability.  There is no reason to choose a value of au less than 0.5.  In fact, in a simple normal flow formulation, the value of 0.5 is usually the best choice.  The value is specified in the worksheet “Calculator”.


The versions of (21) and (22) used at node 1 involve the ghost node given in Figure 2, where the feed rate of material qtf is specified.  Here the ghost node is at i = 0 (g) located (x upstream of the upstream end of the reach, at which qt,g = qtf.

Output Control


Output is controlled by the parameters Ntoprint and Nprint.  The code will implement Ntoprint time steps before printing output to worksheet “ResultsofCalc”.  In addition to output pertaining to the initial state, the code implements Nprint outputs, to that the total number of time steps executed is equal to Nprint x Ntoprint.  Output is given graphically in worksheet “PlottheData”.
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